Abstract:
A method for fabricating low-loss optically active device having an optical waveguide constructed of an optical waveguide core region (non-linear core region) necessitating the non-linear effect when waveguiding an optical signal, and an optical waveguide core region (linear core region) not necessitating the non-linear effect, the method includes method for fabricating an optically active device having an optical waveguide constructed of an optical waveguide core region (non-linear core region) necessitating the non-linear effect when waveguiding an optical signal, and an optical waveguide core region (linear core region) not necessitating the non-linear effect, the method includes the steps of: forming a lower clad layer having a refractive index lower than the material of the waveguide core regions and optical transparency on a substrate, forming a linear optical polymer layer on the lower clad layer by coating linear optical polymer having a refractive index lower than the material of the lower clad layer, forming a first metal layer at a region on the lower clad layer, other than the regions where the waveguide is to be disposed, etching a linear optical polymer layer without the first metal layer formed thereon, forming a non-linear optical polymer layer on the substrate having the non-linear core region, removing the non-linear optical polymer layer stacked to be higher than the waveguide core regions, removing the first metal layer, forming a second metal layer on the waveguide from which the first metal layer is removed, removing the linear optical polymer of the non-second metal layer portion, and forming an upper clad layer on the substrate with the linear optical polymer using a material having a refractive index lower than the waveguide core regions and optical transparency. The waveguide is formed using non-linear optical polymer only at the region where the non-linear effect such as optical modulation or optical switching occurs, and is formed using linear optical polymer at the remaining regions, thereby minimizing the overall waveguiding loss of the waveguide.
Abstract:
An optical waveguide device fabricating method which requires that a lower clad layer is formed on the surface of a glass substrate, a metal layer is formed on the lower clad layer, and a metal pattern is formed by selectively etching the metal layer, for forming a waveguide core therein. Then, an optical polymer layer is formed in the metal pattern, the optical polymer layer in a metal-free portion of the metal pattern is cured by irradiating UV light onto the lower surface of the substrate, and the waveguide core is formed by removing the other portion of optical polymer layer except for the cured portion thereof and the metal layer. Finally, an upper clad layer is formed on the lower clad layer and the waveguide core.
Abstract:
The present disclosure provides an automatic electric punching apparatus that can automatically punch documents or paper sheets by lowering a screw punch blade by means of a screw while being rotated in conjunction with driving of a motor due to switching.
Abstract:
A method of detecting touch positions includes; providing an external power voltage which drives a touch panel, sequentially turning on a plurality of lower driving elements connected to the touch panel, Turning on a plurality of upper driving elements connected to the touch panel to readout at least one multi-touched position corresponding to an x-coordinate, while each of lower driving elements is turned on, receiving readout position information corresponding to an x-coordinate, turning on at least one of the upper driving elements connected to the touch panel, turning on the plurality of lower driving elements connected to the touch panel to readout the at least one multi-touched position corresponding to a y-coordinate, while each of upper driving elements is turned on, receiving readout position information corresponding to the y-coordinate, turning on a sensing element, and turning off the sensing element.
Abstract:
The present invention relates to a method and system for controlling an Internet browsing mode of a portable phone, wherein the method and system involve recognizing a display mode of the portable phone and converting, upon the expansion of a screen size, the display of the screen to a PC version of a webpage corresponding to a mobile version of the webpage currently being displayed. The method for controlling an Internet browsing mode of a portable phone according to the present invention comprises the following steps: recognizing a current display mode as a basic screen mode in a portable phone; recognizing a mobile version mode for displaying a mobile version of a webpage in the basic screen mode; recognizing that the Internet display which has been executed in the mobile version mode in the basic screen mode is expanded to an expanded screen mode; searching for an address of a PC version of a webpage corresponding to the mobile version of the webpage; receiving the PC version of the webpage using the found address; and displaying the PC version of the webpage in the expanded screen mode.
Abstract:
A touch panel includes first and second normally spaced apart substrates. The first substrate includes first spaced apart touch electrodes extended in a first direction and each having a first width (W1). The second substrate includes second spaced apart touch electrodes extended in a different second direction and each having a second width (W2) which is substantially narrower than the first width. One of the substrates can be flexed so that momentary shorting contact is established between corresponding first and second touch electrodes at positions where pressing touch is provided. A combination of interconnect wirings and interrogation circuits are provided for automatically determining where and when the temporary shorting contacts were made, even if plural ones are simultaneously made. The disclosed embodiments include ones where the number of interconnect wirings are reduced.
Abstract:
A light emitting diode (“LED”) backlight assembly. The LED backlight assembly has a bottom container which has a bottom plate and a side edge surrounding the bottom plate, a plurality of light emitting diode printed circuit boards (“LED-PCBs”) on the bottom plate, and a connector which is closely located to edge located LEDs. The connector of the LED-PCB is closely located to an LED driving board, which is disposed at a lateral space of a lateral part of the bottom container to limit a vertical thickness of the backlight light assembly.
Abstract:
A scan driver drives a display device having a plurality of gate lines transferring scan signals, and a plurality of source lines transferring data signals. The scan driver includes a shift register and a multiple signal applying unit. The shift register includes a plurality of cascade-connected stages, each stage having an output terminal electrically connected to a respective one of the plurality of gate lines. The multiple signal applying unit applies a sub scan signal and a main scan signal. The sub scan signal and the main scan signal sequentially activate each of the plurality of gate lines. Therefore, the scan lines receive the scan signal twice, so that the liquid crystal capacitors electrically connected to the gate lines receive the data voltage twice. As a result, even though the time for charging the liquid crystal capacitors may be reduced, the liquid crystal capacitors may be fully charged to enhance display quality.
Abstract:
Disclosed is a ubiquitous city (u-city) exclusive middleware to provide services to a u-city. A middleware device performs a role corresponding to a brain of a human being by aggregating u-city information collected through wired and wireless converged and complex communication networks, analyzes the aggregated information, finds an optimal service based on reasoned current context information and a given command, and processes the found service to be executed. The u-city exclusive middleware performs various embedded functions by operating in a three-tier method through a u-city infrastructure and a u-city portal, and an operating method and executed functions of the middleware follows a method of an operating system of a typical computer system.
Abstract:
A backlight assembly includes a receiving container, a plurality of light-emitting modules, a driving unit and a side mold. The receiving container includes a bottom plate and a side part formed on a peripheral edge portion of the bottom plate. Light-emitting modules of the plurality of light-emitting modules are disposed in the receiving container. The light-emitting modules include a light-emitting base board and a plurality of light-emitting diodes (“LEDs”) disposed on a first side of the light-emitting base board. The driving unit is disposed in the receiving container proximate to a lower portion of the peripheral edge portion of the bottom plate. The driving unit is electrically connected to the light-emitting modules to control an operation of the plurality of LEDs. The side mold is disposed on the lower portion of the peripheral edge portion of the bottom plate and covers the driving unit.