Abstract:
An electronic device may have wireless circuitry with antennas. An antenna may have an inverted-F antenna resonating element, an antenna ground, and other resonating element structures. A tip of the antenna resonating element and the antenna ground may be separated by a peripheral housing gap filled with plastic. The antenna may be sensitive to capacitance changes induced by the presence of a user's hand overlapping the gap or other portions of the antenna. A hand capacitance sensing electrode may be mounted in the plastic of the gap or elsewhere in the vicinity of the antenna. A transmission line may couple the hand capacitance sensing electrode to the antenna to retune the antenna in the event that the user's hand overlaps the antenna.
Abstract:
An electronic device may have wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from peripheral conductive structures running along the edges of a device housing that are separated from a round by an elongated opening. The electronic device may have a central longitudinal axis that divides the antenna resonating element arm and other antenna structures into symmetrical halves that exhibit mirror symmetry with respect to the central longitudinal axis. The antenna structures may include symmetrical slot antenna resonating elements on opposing sides of the central longitudinal axis. Electrical components such as switches and antenna tuning inductors may be coupled to the antenna structures in a configuration that is symmetrical with respect to the central longitudinal axis. The electrical components may be used to place the antenna structures in an unflipped configuration or in a symmetrical flipped configuration.
Abstract:
An electronic device may be provided with wireless circuitry. The wireless circuitry may include antennas. The antennas may include phased antenna arrays for handling millimeter wave signals. Antennas may be located in antenna signal paths. The antenna signal paths may include adjustable components such as adjustable filters, adjustable gain amplifiers, and adjustable phase shifters. Circuitry may be incorporated into an electronic device to facilitate wireless self-testing operations. Wireless self-testing may involve use of one antenna to transmit an over-the-air antenna test signal that is received by another antenna. The circuitry that facilitates the wireless self-testing operations may include couplers, adjustable switches for temporarily shorting antenna signal paths together, mixers for mixing down radio-frequency signals to allow digitization with analog-to-digital converters, and other circuitry for supporting self-testing operations.
Abstract:
An electronic device may be provided with wireless circuitry. Control circuitry may be used to adjust the wireless circuitry. The wireless circuitry may include antennas that are tuned, adjustable impedance matching circuitry, antenna port selection circuitry, and adjustable transceiver circuitry. Wireless circuit adjustments may be made by ascertaining a current usage scenario for the electronic device based on sensor data, information from cellular base station equipment or other external equipment, signal-to-noise ratio information or other signal information, antenna impedance measurements, and other information about the operation of the electronic device.
Abstract:
An electronic device may have a display. A display cover layer and a transparent inner display member may overlap a display pixel layer. The display pixel layer may have an array of display pixels for displaying images for a user. A touch sensor layer may be interposed between the display pixel layer and the transparent display member. A ferromagnetic shielding layer may be mounted below the display pixel layer. A flexible printed circuit containing coils of metal signal lines that form a near-field communications loop antenna may be interposed between the ferromagnetic shielding layer and the display pixel layer. A non-near-field antenna such as an inverted-F antenna may have a resonating element mounted on an inner surface of the display cover layer. The resonating element may be interposed between the transparent display member and the display cover layer.
Abstract:
Electronic devices may be provided that include radio-frequency transceiver circuitry and antennas. An antenna may be formed from an antenna resonating element and an antenna ground. The antenna resonating element may have a shorter portion that resonates at higher communications band frequencies and a longer portion that resonates at lower communications band frequencies. The resonating element may be formed from a peripheral conductive electronic device housing structure that is separated from the antenna ground by an opening. A parasitic monopole antenna resonating element or parasitic loop antenna resonating element may be located in the opening. Antenna tuning in the higher communications band may be implemented using an adjustable inductor in the parasitic element. Antenna tuning in the lower communications band may be implemented using an adjustable inductor that couples the antenna resonating element to the antenna ground.
Abstract:
An electronic device may be provided with shared antenna structures that can be used to form both a near-field-communications antenna such as a loop antenna and a non-near-field communications antenna such as an inverted-F antenna. The antenna structures may include conductive structures such as metal traces on printed circuits or other dielectric substrates, internal metal housing structures, or other conductive electronic device housing structures. A main resonating element arm may be separated from an antenna ground by an opening. A non-near-field communications antenna return path and antenna feed path may span the opening. A balun may have first and second electromagnetically coupled inductors. The second inductor may have terminals coupled across differential signal terminals in a near-field communications transceiver. The first inductor may form part of the near-field communications loop antenna.
Abstract:
An electronic device may be provided with an antenna. The antenna may have an antenna resonating element and an antenna ground. An adjustable inductor may be coupled between the antenna resonating element and the antenna ground. An antenna feed may have a positive feed terminal coupled to the antenna resonating element and a ground antenna feed coupled to the antenna ground. The adjustable inductor may have first and second inductors coupled to respective first and second ports of a switch. The switch may have a third port coupled to the antenna ground. A capacitor may have a first terminal coupled to ground and a second terminal coupled to the first inductor at the first port of the switch. An inductor may be coupled between the antenna resonating element and antenna ground at a location between the adjustable inductor and the antenna feed.
Abstract:
Electronic devices may be provided that include radio-frequency transceiver circuitry and antennas. An antenna may be formed from an antenna resonating element and an antenna ground. The antenna resonating element may have a shorter portion that resonates at higher communications band frequencies and a longer portion that resonates at lower communications band frequencies. An extended portion of the antenna ground may form an inverted-F antenna resonating element portion of the antenna resonating element. The antenna resonating element may be formed from a peripheral conductive electronic device housing structure that is separated from the antenna ground by an opening. A first antenna feed may be coupled between the peripheral conductive electronic device housing structures and the antenna ground across the opening. A second antenna feed may be coupled to the inverted-F antenna resonating element portion of the antenna resonating element.
Abstract:
An electronic device may be provided with electrical components mounted in a housing. The electronic device may include wireless transceiver circuitry and antenna structures. A display may be mounted in the housing. The display may have a transparent layer such as display cover layer. The display cover layer may have an inner surface with a recess. The recess may be a groove that runs along a peripheral edge of the display cover layer. An antenna structure such as an inverted-F antenna resonating element may be formed from a metal trace on a plastic support structure. The metal trace and support structure may be mounted in the groove with adhesive. The housing may be a metal housing that forms an antenna ground. Springs may be used in forming an antenna feed and an antenna return path that couples the antenna resonating element to ground.