摘要:
The present invention provides a lithographic difficulty metric that is a function of an energy ratio factor that includes a ratio of hard-to-print energy to easy-to-print energy of the diffraction orders along an angular coordinate θi of spatial frequency space, an energy entropy factor comprising energy entropy of said diffraction orders along said angular coordinate θi, a phase entropy factor comprising phase entropy of said diffraction orders along said angular coordinate θi, and a total energy entropy factor comprising total energy entropy of said diffraction orders. The hard-to-print energy includes energy of the diffraction orders at values of the normalized radial coordinates r of spatial frequency space in a neighborhood of r=0 and in a neighborhood of r=1, and the easy-to-print energy includes energy of the diffraction orders located at intermediate values of normalized radial coordinates r between the neighborhood of r=0 and the neighborhood of r=1. The value of the lithographic difficulty metric may be used to identify patterns in a design layout that are binding patterns in an optimization computation. The lithographic difficulty metric may be used to design integrated circuits that have good, relatively easy-to-print characteristics.
摘要:
A method for obtaining mask and source patterns for printing integrated circuit patterns includes providing initial representations of a plurality of mask and source patterns. The method identifies long-range and short-range factors in the representations of the plurality of mask and source patterns, and provides a plurality of clips including a specified number of mask patterns. Short-range factors having overlapping ranges for each of the clips are specified. The method includes determining an initial processing priority for the plurality of clips, and determining a patterning relationship between integrated circuit patterns and the mask and source patterns. A primary objective is determined which expresses the printability of the integrated circuit patterns in terms of the patterning relationship. The method defines and iteratively solves a master problem employing the primary objective to generate values for the long-range factors, and solves subproblems employing a second objective for generating values for the short-range factors.
摘要:
A method, system, computer program product and table lookup system for calculating image intensity for a mask used in integrated circuit processing are disclosed. A method may comprise: decomposing a Manhattan polygon of the mask into decomposed areas based on parallel edges of the Manhattan polygon along only one dimension; determining a convolution of each decomposed area based on a table lookup; determining a sum of coherent systems contribution of the Manhattan polygon based on the convolutions of the decomposed areas; and outputting the determined sum of coherent system contribution for analyzing the mask.
摘要:
The manufacturability of a lithographic mask employed in fabricating instances of a semiconductor device is determined. Target edges are selected from mask layout data of the lithographic mask. The mask layout data includes polygons distributed over cells, where each polygon has edges. The cells include a center cell, two vertical cells above and below the center cell, and two horizontal cells to the left and right of the center cell. Target edge pairs are selected for determining a manufacturing penalty in making the lithographic mask, in a manner that decreases the computational volume in determining the manufacturing penalty. The manufacturability of the lithographic mask, including the manufacturing penalty in making the lithographic mask, is determined based on the target edge pairs selected. The manufacturability of the lithographic mask is output. The manufacturability of the lithographic mask is dependent on the manufacturing penalty in making the lithographic mask.
摘要:
The manufacturability of a lithographic mask employed in fabricating instances of a semiconductor device is determined. Target edge pairs are selected from mask layout data of the lithographic mask to determine a manufacturing penalty in making the lithographic mask. The mask layout data includes polygons, where each polygon has edges, and where each target edge pair is defined by two of the edges of one or more of the polygons. The number of the target edge pairs is reduced to decrease computational volume in determining the manufacturing penalty in making the lithographic mask. The manufacturability of the lithographic mask, including the manufacturing penalty in making the lithographic mask, is determined based on the target edge pairs as reduced in number. The manufacturability of the lithographic mask is output. The manufacturability of the lithographic mask is dependent on the manufacturing penalty in making the lithographic mask.
摘要:
Optical wave data for a semiconductor device design is divided into regions. First wavefront engineering is performed on the wave data of each region, accounting for just the wave data of each region and not accounting for the wave data of neighboring regions of each region. The optical wave data of each region is normalized based on results of the first wavefront engineering. Second wavefront engineering is performed on the wave data of each region, based at least on the wave data of each region as has been normalized. The second wavefront engineering takes into account the wave data of each region and a guard band around each region that includes the wave data of the neighboring regions of each region. The second wavefront engineering can be sequentially performed by organizing the regions into groups, and sequentially performing the second wavefront engineering on the regions of each group in parallel.
摘要:
A solution for performing a data correction on a hierarchical integrated circuit layout is provided. A method includes: receiving a CD compensation map for the long range critical dimension variation prior to the data correction; grouping compensation amounts of the CD compensation into multiple compensation ranges; generating multiple target layers corresponding to the multiple compensation ranges; super-imposing a region of the CD compensation map having a compensation amount falling into a compensation range over a respective target layer to generate a target shape; performing the data correction on the layout to generate a data corrected layout; performing the data correction on the target shape separately to generate a data corrected target shape; and combining the data corrected layout and the data corrected target shape based on the CD compensation map.
摘要:
The manufacturability of a lithographic mask employed in fabricating instances of a semiconductor device is determined. Target edge pairs are selected from mask layout data of the lithographic mask, for determining a manufacturing penalty in making the lithographic mask. The mask layout data includes polygons, where each polygon has a number of edges. Each target edge pair is defined by two of the edges of one or more of the polygons. The manufacturability of the lithographic mask, including the manufacturing penalty in making the lithographic mask, is determined. Determining the manufacturing penalty is based on the target edge pairs as selected. Determining the manufacturability of the lithographic mask uses continuous derivatives characterizing the manufacturability of the lithographic mask on a continuous scale. The manufacturability of the lithographic mask is output. The manufacturability of the lithographic mask is dependent on the manufacturing penalty in making the lithographic mask.
摘要:
The manufacturability of a lithographic mask employed in fabricating instances of a semiconductor device is determined. Target edge pairs are selected from mask layout data of the lithographic mask to determine a manufacturing penalty in making the lithographic mask. The mask layout data includes polygons, where each polygon has edges, and where each target edge pair is defined by two of the edges of one or more of the polygons. The number of the target edge pairs is reduced to decrease computational volume in determining the manufacturing penalty in making the lithographic mask. The manufacturability of the lithographic mask, including the manufacturing penalty in making the lithographic mask, is determined based on the target edge pairs as reduced in number. The manufacturability of the lithographic mask is output. The manufacturability of the lithographic mask is dependent on the manufacturing penalty in making the lithographic mask.
摘要:
A set of candidate global optima is identified, one of which is a global solution for making a mask for printing a lithographic pattern. A solution space is formed from dominant joint eigenvectors that is constrained for bright and dark areas of the printed pattern. The solution space is mapped to identify regions each containing at most one local minimum intensity. For each selected region, stepped intensity contours are generated for intensity of the dark areas and stepped constraint surfaces are generated for a target exposure dose at an individual test point. An individual test point is stepped toward a lowest intensity contour along the stepped constraint surfaces of each selected region. Further lowering of the intensities of these points is also detailed, where possible in adjacent regions, to yield final test points. The set of candidate global optima is the final test points at their respective lowest intensity contour of the respective selected regions.