Abstract:
In some implementations, a computing device can be configured to automatically turn off notifications when generating a notification would cause a disturbance or be unwanted by a user. The device can be configured with quiet hours during which notifications that would otherwise be generated by the computing device can be suppressed. In some implementations, quiet hours can be configured as a time period with a start time and an end time. In some implementations, quiet hours can be derived from application data. For example, calendar data, alarm clock data, map data, etc. can be used to determine when quiet hours should be enforced. In some implementations, the device can be configured with exceptions to quiet hour notification suppression. In some implementations, the user can identify contacts to which the quiet hours notification suppression should not be applied.
Abstract:
Location-based ticket books are described. A mobile device can be programmed to present a virtual ticket to a service provider based on a location of the mobile device. The mobile device can receive a virtual ticket for accessing a service from a service provider. The virtual ticket can be associated with a signal source. The signal source can be pre-programmed to broadcast a beacon signal that includes an identifier identifying the signal source. The signal source can be placed at a venue where the service is available. The mobile device, upon arriving at the venue, can detect the beacon signal from the signal source. In response, the mobile device can activate a ticket manager. The ticket manager can automatically select, from a ticket book, the virtual ticket associated with the signal source. The mobile device can present content of the selected virtual ticket at the venue where the service is available.
Abstract:
Systems, methods, and computer-readable media for provisioning credentials on an electronic device are provided. In one example embodiment, a secure platform system may be in communication with an electronic device and a financial institution subsystem. The secure platform system may be configured to, inter alia, detect a selection of a particular commerce credential, access communication mechanism data indicative of at least one communication mechanism of the device, where the at least one mechanism is configured to receive a communication on the device, transmit information to the financial subsystem, where the information includes the mechanism data and the selection of the particular commerce credential, and instruct the financial subsystem to provision the particular commerce credential in a disabled state on the device and communicate credential enablement data to the device using a particular communication mechanism of the at least one communication mechanism indicated by the communication mechanism data.
Abstract:
To facilitate conducting a financial transaction via wireless communication between an electronic device and another electronic device, the electronic device determines a unique transaction identifier for the financial transaction based on financial-account information communicated to the other electronic device. The financial-account information specifies a financial account that is used to pay for the financial transaction. Moreover, the unique transaction identifier may be capable of being independently computed by one or more other entities associated with the financial transaction (such as a counterparty in the financial transaction or a payment network that processes payment for the financial transaction) based on the financial-account information communicated by the portable electronic device. The electronic device may also associate receipt information, which is subsequently received from a third party (such as the payment network), with the financial transaction by comparing the determined unique transaction identifier to the computed unique transaction identifier.
Abstract:
Systems, methods, and computer-readable media for provisioning credentials on an electronic device are provided. In one example embodiment, a secure platform system may be in communication with an electronic device and a financial institution subsystem. The secure platform system may be configured to, inter alia, receive user account information from the electronic device, authenticate a user account with a commercial entity using the received user account information, detect a commerce credential associated with the authenticated user account, run a commercial entity fraud check on the detected commerce credential, commission the financial institution subsystem to run a financial entity fraud check on the detected commerce credential based on the results of the commercial entity fraud check, and facilitate provisioning of the detected commerce credential on the electronic device based on the results of the financial entity fraud check. Additional embodiments are also provided.
Abstract:
Location-based ticket books are described. A mobile device can present a virtual ticket to a service provider based on a location of the mobile device. The mobile device can receive a virtual ticket for accessing a service from a service provider. The virtual ticket can be associated with a signal source. The signal source can be pre-programmed to broadcast a beacon signal that includes an identifier identifying the signal source. The signal source can be placed at a venue where the service is available. The mobile device, upon arriving at the venue, can detect the beacon signal from the signal source. In response, the mobile device can activate a ticket manager. The ticket manager can automatically select, from a ticket book, the virtual ticket associated with the signal source. The mobile device can present content of the selected virtual ticket at the venue where the service is available.