Abstract:
A tire/wheel assembly includes a cylindrical annular structure, a rubber material layer provided on a periphery of the annular structure and that faces a circumferential direction of the annular structure, and a plurality of curved metal spring members provided between the annular structure and an electric motor disposed on the inner side of the annular structure that transfers rotation of a rotor of the electric motor to the annular structure.
Abstract:
A method for manufacturing a bladder for use in manufacturing tires having a surface-modified rubber layer on an outer surface side of a base rubber layer, including the steps of: forming an uncross-linked body of the surface-modified rubber layer by molding a rubber composition including a modified butyl rubber composition and an organic peroxide and applying a siloxane compound having a (meth)acryloyl group to a surface of this rubber molded body; forming the base rubber layer from an unvulcanized body or vulcanized body formed from a rubber composition different than the modified butyl rubber composition; laminating the uncross-linked body of the surface-modified rubber layer on the outer surface side of the base rubber layer; and heat treating.
Abstract:
A pneumatic tire including a resin layer on at least a portion of the tire inside surface, the resin layer being formed from a thermoplastic resin or a thermoplastic elastomer composition in which an elastomer is dispersed in a thermoplastic resin. The pneumatic tire is provided with a fastener including a base material formed from a thermoplastic resin and engaging elements formed on the base material. Additionally, the base material of the fastener is fixed to the resin layer via fusion bonding.
Abstract:
A tire noise reduction device includes at least one noise absorbing member made of a porous material. The noise absorbing member is attached to the inner surface of the tire tread portion. The noise absorbing member includes multiple continuous grooves arranged side by side in a tire circumferential direction in the outer peripheral surface of the noise absorbing member. Each of the continuous grooves has an areal groove bottom and forms see-through regions in the width direction of the noise absorbing member. A groove edge-to-edge distance between each adjacent two of the continuous grooves in the tire circumferential direction is 2 mm to 40 mm. A largest see-through cross-sectional area of each continuous groove is 20 mm2 to 100 mm2.
Abstract:
A pneumatic tire having at least two belt plies provided radially outwardly of a carcass ply in the tread. A belt cover ply is disposed radially outwardly of the at least two belt plies. The belt cover ply has reinforcing cords that extend in the circumferential direction of the tire and is covered with coating rubber. The belt cover ply extends beyond the edges of one of the at least two belt plies having a maximum belt width to have extension portions that extend at least 10 mm axially of the tire therefrom. The coating rubber of at least the extension portions of the belt cover ply is formed of rubber having a tan delta at a temperature of 60.degree. C. that is equal to or less than 0.1, and the ratio h/SH of a tire radial-direction length h between the edges of the extension portions and the edges of the belt ply having the maximum belt width to the tire section height SH is equal to or less than 1.5/100.
Abstract:
A pneumatic tire designed so that when a hook and loop fastener is fitted to the tire internal face of a pneumatic tire furnished with an inner liner layer consisting of a thermoplastic elastomer composition of a blend of thermoplastic resin and elastomer, or a thermoplastic resin, the hook and loop fastener can easily follow the elongation of the inner liner layer and is free from damaging of the inner liner layer. There is disclosed a pneumatic tire furnished on its internal face with an inner liner layer (7) consisting of a thermoplastic elastomer composition composed of thermoplastic resin and elastomer, or a thermoplastic resin, characterized in that integral forming of a multiplicity of interlocking elements (8) protruding on the hollow side of the tire is effected on the surface of the inner layer (7).
Abstract:
Provided is a tire noise reduction device including: a sound absorbing body 2 to be mounted on an inner surface of a tire; an annular band member 3 fixing the sound absorbing body 2 and made of a thermoplastic elastomer composition containing an elastomer dispersed into a thermoplastic resin. With such an annular band member 3 made of the thermoplastic elastomer composition, the sound absorbing body 2 is not separated from the inner surface of a tread portion 5 even when the tire is used in an extremely cold place, and thereby excellent low temperature performances can be obtained.
Abstract:
A low noise pneumatic tire according to the present invention includes a belt-shaped sound absorbing member mounted on the radially inner surface of the tread by a fixing elastic band, the belt-shaped sound absorbing member being formed of a porous material. The belt-shaped sound absorbing member has a width ranged from 40% to 90% of the maximum width of the tire, and a thickness ranged from 5 mm to 50 mm.
Abstract:
Provided is a pneumatic tire in which the adhesion of a noise absorbing member formed of a porous material is improved. A pneumatic tire according to the present invention includes a resin layer, a noise absorbing member and a locking member. The resin layer is formed of any one of a thermoplastic resin and a thermoplastic elastomeric composition obtained by dispersing an elastomer in a thermoplastic resin, and is formed on at least a part of the inner surface of the tire. The noise absorbing member is formed of a porous material, and is disposed on the resin layer. The locking member is formed of a thermoplastic resin, and is bonded to the resin layer through the noise absorbing member by thermal fusion.
Abstract:
Disclosed is a pneumatic tire provided with an elastic fixing band having excellent durability and enabling stable attachment of a member, which is independent from the tire, to an inner surface of a tread thereof. The pneumatic tire of the present invention includes a member attached to an inner surface of a tread thereof by use of an elastic fixing band, the member being independent from the tire. The pneumatic tire is characterized in that the elastic fixing band is formed of a metallic band form with a width in a range of 10 to 40 mm and a thickness in a range of 0.1 to 0.5 mm.