摘要:
An imager or display system with multiple lenses, which are formed, patterned and shaped over one or more pixels in an imager or display array. The multiple lenses provide for an improved concentration of light being refracted onto a photosensitive area or light diffused from a display pixel.
摘要:
Microelectronic imagers including stacked lens assemblies and process for wafer-level packaging of microelectronic imagers. One embodiment of a method for manufacturing stacked lens assemblies for integrated imagers comprises attaching a first lens substrate to a base spacer, fixing an intermediate spacer to the first lens substrate, and mounting a second lens substrate to the intermediate spacer. In a specific embodiment, the first lens substrate can be a component of a first lens unit and the second lens substrate can be a component of a second lens unit. Additionally, the first and second lens substrates can have one or more lens elements, aperture layers and/or filters on the substrates as described above or in other combinations.
摘要:
A micro-lens and a method for forming the micro-lens is provided. A micro-lens includes a substrate and lens material located within the substrate, the substrate having a recessed area serving as a mold for the lens material. The recessed can be shaped such that the lens material corrects for optical aberrations. The micro-lens can be part of a micro-lens array. The recessed area can serve as a mold for lens material for the micro-lens array and can be shaped such that the micro-lens array includes arcuate, non-spherical, or non-symmetrical micro-lenses.
摘要:
An optimized color filter array is formed in, above or below a one or more damascene layers. The color filter array includes filter regions which are configured to optimize the combined optical properties of the layers of the device to maximize the intensity of the particular wavelength of light incident to a respective underlying photodiode.
摘要:
A microlens array with reduced or no empty space between individual microlenses and a method for forming the same. The microlens array is formed by patterning a first set of microlens precursors in a checkerboard pattern on a substrate. The first set of microlens precursors is reflowed and cured into first microlenses impervious to subsequent reflows. Then, a second set of microlens precursors is patterned in spaces among the first microlenses, reflowed and cured into second microlenses. The reflows and cures can be conducted under different conditions, and the microlenses may be differently sized. The conditions of the reflows can be chosen to ensure that the focal lengths of microlenses are optimized for maximum sensor signal.
摘要:
Ellipse-shaped microlenses focus light onto unbalanced photosensitive areas, increase area coverage for a gapless layout of microlenses, and allow pair-wise or other individual shifts of the microlenses to account for asymmetrical pixels and pixel layout architectures. The microlenses may be fabricated in sets, with one set oriented differently from another set, and may be arranged in various patterns, for example, in a checkerboard pattern or radial pattern. The microlenses of at least one set may be substantially elliptical in shape. To fabricate a first set of microlenses, a first set of microlens material is patterned onto a support, reflowed under first reflow conditions, and cured. To fabricate a second set of microlenses, a second set of microlens material is patterned onto the support, reflowed under second reflow conditions, which may be different from the first conditions, and cured.
摘要:
A micro-lens and a method for forming the micro-lens is provided. A micro-lens includes a substrate and lens material located within the substrate, the substrate having a recessed area serving as a mold for the lens material. The recessed can be shaped such that the lens material corrects for optical aberrations. The micro-lens can be part of a micro-lens array. The recessed area can serve as a mold for lens material for the micro-lens array and can be shaped such that the micro-lens array includes arcuate, non-spherical, or non-symmetrical micro-lenses.
摘要:
A microlens array having first and second sets of spherically-shaped microlenses. The second set of spherically-shaped microlenses are located in the areas between individual microlenses of the first set in such a way that there is minimized gapping over the entire microlens array. A semiconductor-based imager includes a pixel array having embedded pixel cells, each with a photosensor, and a microlens array having spherically-shaped microlenses as just described.
摘要:
A method and apparatus for exposing a radiation-sensitive material of a microlithographic substrate to a selected radiation. The method can include directing the radiation along a radiation path in a first direction toward a reticle, passing the radiation from the reticle and to the microlithographic substrate along the radiation path in a second direction, and moving the reticle relative to the radiation path along a reticle path generally normal to the first direction. The microlithographic substrate can move relative to the radiation path along a substrate path having a first component generally parallel to the second direction, and a second component generally perpendicular to the second direction. The microlithographic substrate can move generally parallel to and generally perpendicular to the second direction in a periodic manner while the reticle moves along the reticle path to change a relative position of a focal plane of the radiation.
摘要:
A method and apparatus for controlling an intensity distribution of a radiation beam directed to a microlithographic substrate. The method can include directing a radiation beam from a radiation source along the radiation path, with the radiation beam having a first distribution of intensity as the function of location in a plane generally transverse to the radiation path. The radiation beam impinges on an adaptive structure positioned in the radiation path and an intensity distribution of the radiation beam is changed from the first distribution to a second distribution by changing a state of the first portion of the adaptive structure relative to a second portion of the adaptive structure. For example, the transmissivity of the first portion, or inclination of the first portion can be changed relative to the second portion. The radiation is then directed away from the adaptive structure to impinge on the microlithographic substrate.