摘要:
A pixel structure and a manufacturing method thereof are provided. The pixel structure includes a substrate, a scan line, a data line, a first insulating layer, an active device, a second insulating layer, a common electrode and a first pixel electrode. The data line crossed to the scan line is disposed on the substrate and includes a linear transmitting part and a cross-line transmitting part. The first insulating layer covering the scan line and the linear transmitting part is disposed between the scan line and the cross-line transmitting part. The active device, including a gate, an oxide channel, a source and a drain, is connected to the scan line and the data line. The second insulating layer is disposed on the oxide channel and the linear transmitting part. The common electrode is disposed above the linear transmitting part. The first pixel electrode is connected to the drain.
摘要:
A pixel structure includes a scan line, a data line, an active element, a first passivation layer, a second passivation layer and a pixel electrode. The data line includes a first data metal segment and a second data metal layer. The active element includes a gate electrode, an insulating layer, a channel layer, a source and a drain. The channel layer is positioned on the insulating layer above the gate electrode. The source and the drain are positioned on the channel layer. The source is coupled to the data line. The first passivation layer and the second passivation layer cover the active element and form a first contact hole to expose a part of the drain. The second passivation layer covers a part edge of the drain. The pixel electrode is disposed across the second passivation layer and coupled to the drain via the first contact hole.
摘要:
A tri-gate pixel structure includes three sub-pixel regions, three gate lines, a data line, three thin film transistors (TFTs), three pixel electrodes, and a common line. The gate lines are disposed along a first direction, and the data line is disposed along a second direction. The TFTs are disposed in the sub-pixel regions respectively, wherein each TFT has a gate electrode electrically connected to a corresponding gate line, a source electrode electrically connected to the data line, and a drain electrode. The three pixel electrodes are disposed in the three sub-pixel regions respectively, and each pixel electrode is electrically connected to the drain electrode of one TFT respectively. The common line crosses the gate lines and partially overlaps the three gate lines, and the common line and the three pixel electrodes are partially overlapped to respectively form three storage capacitors.
摘要:
A liquid crystal display unit structure and the manufacturing method thereof are provided. The liquid crystal display unit structure comprises a patterned first metal layer with a first data line segment and a gate line on a substrate; a patterned dielectric layer covering the first data line and the gate line having a plurality of first openings and a second opening therein, a patterned etch stop layer having a first portion located above the first data line segment and a second portion; a patterned second metal layer including a common electrode line, a second data line segment, a source electrode and a drain electrode, wherein the first portion of the patterned etch stop layer is between the first data line segment and the common line; a patterned passivation layer and a patterned transparent conductive layer.
摘要:
An active device array substrate and its fabricating method are provided. According to the subject invention, the elements of an array substrate such as the thin film transistors, gate lines, gate pads, data lines, data pads and storage electrodes, are provided by forming a patterned first metal layer, an insulating layer, a patterned semiconductor layer and a patterned metal multilayer. Furthermore, the subject invention uses the means of selectively etching certain layers. Using the aforesaid means, the array substrate of the subject invention has some layers with under-cut structures, and thus, the number of the time-consuming and complicated mask etching process involved in the production of an array substrate can be reduced. The subject invention provides a relatively simple and time-saving method for producing an array substrate.
摘要:
A method for producing a light reflecting structure in a transflective or reflective liquid crystal display uses one or two masks for masking a photoresist layer in a back-side exposing process. The pattern on the masks is designed to produce rod-like structures or crevices and holes on exposed and developed photoresist layer. After the exposed photoresist is developed, a heat treatment process or a UV curing process is used to soften the photoresist layer so that the reshaped surface is more or less contiguous but uneven. A reflective coating is then deposited on the uneven surface. One or more intermediate layers can be made between the masks, between the lower mask and the substrate, and between the upper masks and the photoresist layers. The masks and the intermediate layers can be made in conjunction with the fabrication of the liquid crystal display panel.
摘要:
A pixel structure includes a scan line, a data line, an active element, a first passivation layer, a second passivation layer and a pixel electrode. The data line includes a first data metal segment and a second data metal layer. The active element includes a gate electrode, an insulating layer, a channel layer, a source and a drain. The channel layer is positioned on the insulating layer above the gate electrode. The source and the drain are positioned on the channel layer. The source is coupled to the data line. The first passivation layer and the second passivation layer cover the active element and form a first contact hole to expose a part of the drain. The second passivation layer covers a part edge of the drain. The pixel electrode is disposed across the second passivation layer and coupled to the drain via the first contact hole.
摘要:
A pixel structure including a scan line, a data line, an active device, a shielding electrode, and a pixel electrode is provided on a substrate. The data line includes an upper conductive wire and a bottom conductive wire. The upper conductive wire is disposed over and across the scan line. The bottom conductive wire is electrically connected to the upper conductive wire. The active device is electrically connected to the scan line and the upper conductive wire. The shielding electrode is disposed over the bottom conductive wire. The pixel electrode disposed over the shielding electrode is electrically connected to the active device. In addition, parts of the pixel electrode and parts of the shielding electrode form a storage capacitor.
摘要:
A pixel structure of a fringe field switching liquid crystal display (FFS-LCD) and a method for manufacturing the pixel structure are provided. Compared to the conventional method of using seven photolithography-etching processes for manufacturing a pixel structure, the method of the present invention uses only six photolithography-etching processes that save manufacturing costs and time. Furthermore, the pixel structure thereby only comprises two insulating layers, and thus, the light transmittance thereof can be increased in comparison to the conventional pixel structure comprising three insulating layers.
摘要:
An active device array substrate and its fabricating method are provided. According to the subject invention, the elements of an array substrate such as the thin film transistors, gate lines, gate pads, data lines, data pads and storage electrodes, are provided by forming a patterned first metal layer, an insulating layer, a patterned semiconductor layer and a patterned metal multilayer. Furthermore, the subject invention uses the means of selectively etching certain layers. Using the aforesaid means, the array substrate of the subject invention has some layers with under-cut structures, and thus, the number of the time-consuming and complicated mask etching process involved in the production of an array substrate can be reduced. The subject invention provides a relatively simple and time-saving method for producing an array substrate.