Abstract:
Embodiments include methods, systems and computer readable storage medium for determining a location for one or more wireless stations or access points. The method includes receiving, by a processor, trace data from one or more vehicles. The method further includes performing, by the processor, a particle filtering analysis on the trace data. The method further includes determining, by the processor, a location for the one or more wireless stations or access points.
Abstract:
An exemplary method for controlling a vehicle includes providing a vehicle steering system including a moveable steering column assembly and a moveable steering wheel assembly, a first actuator and a second actuator, the first and second actuators configured to move vehicle steering system from a first position to a second position, providing a plurality of sensors, the sensors configured to measure a force characteristic, providing a controller electronically connected to the sensors and the vehicle steering system, monitoring first sensor data received from the first sensor and second sensor data received from the second sensor, generating a reference model based on a desired output displacement and the first and second sensor data, calculating, a revised output displacement based on the reference model, and automatically generating a first control signal to control the first actuator and a second control signal to control the second actuator.
Abstract:
Presented are systems and methods for extracting lane-level information of designated road segments by mining vehicle dynamics data traces. A method for controlling operation of a motor vehicle includes: determining the vehicle's location; identifying a road segment corresponding to the vehicle's location; receiving road-level data associated with this road segment; determining a turning angle and centerline for the road segment; receiving vehicle data indicative of vehicle locations and dynamics for multiple vehicles travelling on the road segment; determining, from this vehicle data, trajectory data indicative of start points, end points, and centerline offset distances for these vehicles; identifying total driving lanes for the road segment by processing the trajectory data with a clustering algorithm given the turning angle and centerline; extracting virtual trajectories for the driving lanes; and commanding a vehicle subsystem to execute a control operation based on an extracted virtual trajectory for at least one driving lane.
Abstract:
Methods and apparatus are provided for damage risk indication of a steering system of a vehicle. The apparatus includes a sensor system and a processing device. The sensor system is configured to detect a velocity of a servo unit of a steering system of the vehicle. The processing device is configured to determine an acceleration value of the servo unit and to compare the acceleration value, velocity values and thresholds of the servo unit with an acceleration value threshold, and to generate a warning signal if the acceleration value of the servo unit exceeds the acceleration value threshold. Thus, a damage risk is determined and the vehicle can be subjected to further damage investigation.
Abstract:
A system and method for using data that is external to a vehicle in vehicular applications. The system and method include determining data that is external to the vehicle is available for use, comparing the external data to data that is available from a vehicle system, and determining whether the external data has a higher utility function compared to data that is available from a vehicle system. The system and method further include using the external data to enhance a vehicular application if the external data has a higher utility function.
Abstract:
A mobile device screen projection system for an in-vehicle display is provided. The system receives mobile device content from a mobile device, receives context data from a plurality of information sources associated with at least one of the vehicle and the mobile device, determines an integrated context based on the context data, and selectively renders the mobile device content on the in-vehicle display based on the integrated context.
Abstract:
A method of creating a high-definition (HD) map of a roadway includes receiving a multi-layer probability density bitmap. The multi-layer probability density bitmap represents a plurality of lane lines of the roadway sensed by a plurality of sensors of a plurality of vehicles. The multi-layer probability density bitmap includes a plurality of points. The method further includes recursively conducting a hill climbing search using the multi-layer probability density bitmap to create a plurality of lines. In addition, the method includes creating the HD map of the roadway using the plurality of lines determined by the hill climbing search.
Abstract:
A system for fusing two or more versions of map data together includes one or more central computers that receive road network data representing a road network for a predefined geofenced area. The central computers compute a plurality of points that are each positioned at a predetermined distance from one another. The central computers create a plurality of bounding boxes for the road network based on the plurality of points and create a set of closest matched map data points for each bounding box that is part of the road network by executing a map-matching registration algorithm to align the two or more versions of map data with one another. The central computers execute a maximum likelihood estimation algorithm to determine probability distribution parameters of the set of closest matched map data points compared to the ground truth map data.
Abstract:
A system comprises a computer including a processor and a memory. The memory includes instructions such that the processor is programmed to: receive safety messages from a plurality of vehicles in communication with the edge server, determine an uplink frequency recommendation for transmitting safety messages from at least one vehicle of the plurality of vehicles based on at least one of a position error or a collision risk, determine a downlink frequency recommendation for transmitting safety messaging to at least one vehicle of the plurality of vehicles based on at least one of a position error or a collision risk, and transmit the frequency recommendations to the at least one vehicle.
Abstract:
A map updating system for a vehicle includes one or more input devices. The input device generates an input signal associated with data indicative of multiple landmark points relative to multiple road semantic features. The system further includes a computer having one or more processors that receive the input signal. The computer further includes a non-transitory computer readable storage medium for storing instructions. The processor is programmed to build a local map including the road semantic features and the landmark points. The processor is further programmed to determine a radius of road curvature associated with each road semantic feature and compare the radius of road curvature to a maximum radius of curvature threshold. The processor is further programmed to transmit an update signal to a cloud server, in response the processor determining that the radius of road curvature is less than the maximum radius of curvature threshold.