Abstract:
Hybrid bonded turbine rotors and methods for manufacturing the same are provided. A method for manufacturing a hybrid bonded turbine rotor comprises the steps of providing turbine disk having a rim portion comprising a live rim of circumferentially continuous material and a plurality of live rim notches in an outer periphery of the turbine disk alternating with a plurality of raised blade attachment surfaces defining the outer periphery; providing a plurality of turbine blades, each of which comprising an airfoil portion and a shank portion, the shank portion having a base surface; metallurgically bonding a compliant alloy material layer to either or both of the raised blade attachments surfaces of the turbine disk and the base surfaces of the blade shanks; and linear friction welding the plurality of blades to the turbine disk so as to form a bond plane between the raised blade attachments surfaces of the turbine disk and the base surfaces of the blade shanks, the compliant alloy material layer being disposed at the bond plane.
Abstract:
A method for manufacturing a metallic article includes providing or obtaining a metallic material in powder form, using an additive manufacturing process, building the metallic article from the powder-form metallic material, layer-by-layer, in a build direction, wherein as a result of the additive manufacturing process, the metallic article comprises columnar grain structures oriented in the build direction, and conveying the metallic article through a gradient furnace in a direction of conveyance from a first area of the gradient furnace to a second area of the gradient furnace to increase a size of the columnar grain structures in the metallic article. The metallic article is conveyed through the gradient furnace in an orientation such that the columnar structures oriented in the build direction are substantially parallel to the direction of conveyance.
Abstract:
A heat exchange system includes a tubular fan air inlet portion and a tubular cooled air outlet portion connected to a first end of a tubular mid portion. The heat exchange system further includes a tubular hot air inlet portion and a tubular recycled fan air outlet portion connected a second end of the mid portion. Still further, the heat exchange system includes an integrally-formed, compliant heat exchanger tube extending between the hot air inlet portion and the cooled air outlet portion within the mid portion to define a heat exchanger first flow passage within the heat exchanger tube and a second flow passage outside of the heat exchanger tube but within the tubular mid portion. Methods for fabricating such heat exchange systems are also provided.
Abstract:
Unitary heat exchangers having integrally-formed compliant heat exchanger tubes and heat exchange systems including the same are provided. The unitary heat exchanger comprises an inlet plenum and an outlet plenum and a plurality of integrally-formed compliant heat exchanger tubes. The plurality of integrally-formed compliant heat exchanger tubes extend between and are integral with the inlet and outlet plenums to define a heat exchanger first flow passage. Each integrally-formed compliant heat exchanger tube comprises a tubular member and a plurality of integral heat transfer fins extend radially outwardly from at least one portion of the tubular member. The tubular member has a proximal tube end and a distal tube end and comprises a tubular wall having an outer wall surface and an inner wall surface.
Abstract:
A turbine rotor blade is provided. The turbine rotor blade includes a root, a platform coupled to the root, and an airfoil extending from the platform. The platform has a leading edge, a trailing edge, a suction side edge, and a pressure side edge. The pressure side edge includes a first concave portion.
Abstract:
In accordance with an exemplary embodiment, a method for manufacturing a bypass valve of a turbine engine control system is described. The bypass valve includes a proportional valve and an integrator valve and the integrator valve includes an integrator spring assembly. The method includes forming the integrator spring assembly using an additive manufacturing technique. The integrator spring assembly comprises first and second end portions with a spring portion disposed between the first and second end portions. The first and second end portions and the spring portion are formed as an integral unit without welding or brazing using the additive manufacturing technique. The method further includes assembling the integrator spring assembly, the integrator valve, and the proportional valve into a complete bypass valve assembly.
Abstract:
A turbine rotor blade for a turbine section of an engine is provided. The rotor blade includes a platform and an airfoil extending from the platform into a mainstream gas path of the turbine section. The airfoil includes a pressure side wall, a suction side wall joined to the pressure side wall at a leading edge and a trailing edge, and a tip cap extending between the suction side wall and the pressure side wall. The rotor blade further includes an internal cooling circuit having a tip cap passage configured to deliver cooling air to the tip cap and a flow accelerator positioned within the tip cap passage of the internal cooling circuit.
Abstract:
A coupling apparatus for use in sealingly connecting a first fluid flow path to a second fluid flow path. The coupling apparatus includes a rigid fluid flow channel having a first end and a second end, wherein the fluid flow channel is substantially rigid in an axial direction and a radial direction, a first sealing terminus that is rigidly connected to the first end and that is configured for sealing with the first fluid flow path, and a second sealing terminus that is slidingly disposed about the second end such that the second sealing terminus is configured for relative movement with respect to the second end, and wherein the second sealing terminus is further configured for sealing with the second fluid flow path. The coupling apparatus further includes a flexible coupler connected to both the first sealing terminus and the second sealing terminus and surrounding the fluid flow channel, wherein the coupler is relatively more flexible in the axial direction and the radial direction as compared to the fluid flow channel.
Abstract:
In accordance with an exemplary embodiment, a method for manufacturing a component using additive manufacturing techniques includes providing a 3D design model for the component, adding one or more crack resistant features to the 3D design model of the component to produce an enhanced design model, and manufacturing the component using an additive manufacturing technique in accordance with the enhanced design model. The one or more crack resistant features are provided to reduce or eliminate the incidence of cracking in the manufactured component.
Abstract:
An airfoil for a gas turbine engine is provided. The airfoil includes a body with a leading edge, a trailing edge, a first side wall extending between the leading edge and the trailing edge, and a second side wall extending between the leading edge and the trailing edge. The body defines an interior cavity. The airfoil includes an interior wall disposed within the interior cavity of the body and extending between the first wall and the second wall to define a supply chamber and a leading edge chamber. The interior wall defines a cooling hole with a base portion and a locally extended portion to direct cooling air from the supply chamber to the leading edge chamber such that the cooling air impinges upon the leading edge.