Abstract:
A composite emulsifier, contains two or more emulsifiers selected from phospholipid, PEG emulsifier and poloxamer-like substance, and may contain cryoprotectant. An emulsion prepared from the composite emulsifier and a preparation method of the emulsion.
Abstract:
A method for deriving data provenance information corresponding to a workflow process having lower-level workflow processes includes deriving internal provenance information for data pertaining to at least one of the lower-level workflow processes, identifying data objects that are shared between at least a pair of lower-level workflow processes to derive external provenance information for the identified data objects, in response to a user-submitted query, using the internal and external provenance information to retrieve the data provenance information for the workflow process, and outputting the derived data provenance to a user.
Abstract:
Head smut is one of the most devastating diseases in maize, causing severe yield loss worldwide. The present invention describes the fine-mapping of a major QTL conferring resistance to head smut. Markers useful for breeding, and methods for conferring head smut resistance are described. Nucleic acid sequence from the genetic locus conferring head smut resistance is disclosed. Genes encoding proteins conferring head smut resistance are disclosed.
Abstract:
A micromechanical device including an improved sensing element and improved bending elements is described. Sensing elements include multi-layered structures which are thinner, lighter, and flatter than structures presently known within the related arts. Bending elements include structures which separately respond to illumination by an infrared source so as to twist a sensing element. Micromechanical pixels may be arranged to form two-dimensional arrays of infrared sensitive pixels. Arrays of micromechanical pixels are applicable to imaging devices for use within the fields of security and surveillance, firefighting, automotive safety, and industrial monitoring.
Abstract:
A chalcogenide glass composition composed of arsenic (As), selenium (Se), sulfur (S), and antimony (Sb) is presented. The composition includes arsenic in the range from 25% to 45% by weight relative to the total weight of the composition, selenium in the range from 40% to 65% by weight relative to the total weight of the composition, sulfur in the range from 2% to 15% by weight relative to the total weight of the composition, and antimony in the range from 0% to 15% by weight relative to the total weight of the composition. The variability of constituents on a weight basis is greater than the related arts, thus facilitating a broader range of design options. The glass composition is preferred to have a thermal expansion coefficient of about 23.6×10−6/° C., a temperature coefficient of refractive index less than about 1×10−6/° C., a glass transition temperature less than 200 degrees Celsius, and/or a glass softening temperature less than 250 degrees Celsius. The present invention has immediate applicability within infrared sensors, infrared imaging devices, lasers, and fiber optic components, one example being amplifiers.
Abstract:
An apparatus and method to operate on a light beam by using a lens that collimates the light beam to a collimated beam with at least one cross-sectional dimension less than a critical dimension of 400 μm or less over a working range WR. The apparatus has a bulk electro-optic material of small thickness τ, e.g., less than 300 μm positioned within working range WR and the collimated beam traverses it along its path. The apparatus has a voltage source for applying a low operating or drive voltage Vdrive, e.g. less than 400 V to the bulk electro-optic material for performing an operation on the collimated beam. The lens for collimating the light beam is a free-space collimator such as a graded index (GRIN) lens or preferably a C-lens. The apparatus is a versatile and scalable platform that can be employed in building various electro-optic devices.
Abstract:
Optical switches which take multiple incoming optical signals and switch them to multiple output ports to realize multiple working states. For example, in a four by four switch embodiment, twenty-four working states can be selected. These switches rely on magneto-optically or electro-optically switching the beam polarizations from one state to another to rapidly change the light path. An optical signal is spatially split into two polarized beams by a birefringent element. These beams pass through a series of polarization rotation elements and recombine into output fibers, achieving polarization independent operation. A polarization beam splitter may be used as the key element to establish multi-port switching. Light bending devices that allow two fibers to be coupled to the light beams using a single lens may be used to achieve small fiber separation for compactness.
Abstract:
A method for HARQ reordering in Enhanced Uplink Dedicated Channel of WCDMA system includes following steps: locating the soft combination buffer in the Node B and the reordering buffer in the SRNC; locating the HARQ entity in the Node B; locating the reordering queue distribution entity, the reordering entity and the disassembly entity in the SRNC. This invention adopts the separation technology of the soft combination buffer and the reordering buffer, the separation model can not only ensure the diversity gain, but also reduce the receiving delay and save the buffer space. Three mechanisms (timer mechanism, window mechanism and SBI mechanism) are proposed to prevent the blocking of the reordering buffer, which degrades the blocking to the least level, improves the receiving efficiency and the system performance. Aiming at the SBI mechanism, the invention proposes the new DCH data frame structure on the Iub interface and the Iur interface.
Abstract:
The present invention provides improved optical switches in which no mechanical movement is required to direct optical pathways between plural fiber ports. Advantageously, the inventive switches incorporate two-stage polarization rotation to improve isolation depth, as well as temperature and wavelength independence. The inventive switches also incorporate light bending devices to allow two fibers to be coupled to the light beams using a single lens achieving small beam separation for compactness. In the inventive switch, an optical signal is spatially split into two polarized beams by a birefringent element, which passes through a polarization rotation device that comprises waveplates, walk-off elements, and electrically controllable polarization rotators, and recombine into an output fiber, achieving polarization independent operation. The switches of the present invention rely on electro-magnetically or electro-optically switching the beam polarizations from one state to another to rapidly direct the light path.
Abstract:
The present invention provides improved optical switches in which no mechanical movement is required to direct optical pathways between plural fiber ports and light transmission is bi-directional. Advantageously, the inventive switches permit bi-directional light transmission. The inventive switches also incorporate light bending devices to allow two fibers to be coupled to the light beams using a single lens for compactness. In the inventive switch, an optical signal is spatially split into two polarized beams by a birefringent element, which passes through a polarization rotation device that comprises waveplates, walk-off elements, and an electrically controllable polarization rotator, and recombine into an output fiber, achieving polarization independent operation. The switches of the present invention rely on electro-magnetically or electro-optically switching the beam polarizations from one state to another to rapidly direct the light path.