摘要:
A media player for creating a media archive may include a media reader to read media content from a recording medium inserted into the media reader. The media player may also include an archival component to store the media content in a storage medium. In one embodiment, the media player includes a playback component to play back the media content from the storage medium concurrently with the storage of the media content by the archival component.
摘要:
An in-situ apparatus is provided for monitoring the state of stress/strain and cracking in a die surface. The apparatus may also be used to facilitate the prudent removal of the die from the surface so that it may be repaired before catastrophic failure occurs. Accordingly, the yield of a process used to generate die cast structures may be greatly increased.
摘要:
Textiles treated with hydrophobic dispersions that exhibit superior drying rates and lower spin-dry water contents are disclosed. Polytetrafluoroethylene, polyvinyl acetate, and polyvinyl acetate/acrylic copolymer dispersions are used to treat textiles, including yarns, fabrics, linens, and articles of clothing. The use of dispersions create textiles with a discontinuous treatment of discrete individual hydrophobic particles applied to the surface. The treated textiles exhibit superior drying properties at very low levels of treatment. Also provided are methods for treating textiles with hydrophobic dispersions. The incremental cost to the textile of the treatment is minimized by low levels of treatment and flexibility in application.
摘要:
A memory element comprising first and second electrodes is provided. The first electrode is tapered such that a first end of the first electrode is larger than a second end of the first electrode. A resistance variable material layer is located between the first and second electrodes, and the second end of the first electrode is in contact with the resistance variable material. Methods for forming the memory element are also provided.
摘要:
A method of forming a metal cap over a conductive interconnect in a chalcogenide-based memory device is provided and includes, forming a layer of a first conductive material over a substrate, depositing an insulating layer over the first conductive material and the substrate, forming an opening in the insulating layer to expose at least a portion of the first conductive material, depositing a second conductive material over the insulating layer and within the opening, removing portions of the second conductive material to form a conductive area within the opening, recessing the conductive area within the opening to a level below an upper surface of the insulating layer, forming a cap of a third conductive material over the recessed conductive area within the opening, depositing a stack of a chalcogenide based memory cell material over the cap, and depositing a conductive material over the chalcogenide stack.
摘要:
A variable resistance memory cell is read by a sense amplifier but without rewriting the contents of the memory cell. If the memory cell has an access transistor, the access transistor is switched off to decouple the cell from the bit line after a predetermined amount of time. The predetermined amount of time is sufficiently long enough to permit the logical state of the cell to be transferred to the bit line and also sufficiently short to isolate the cell from the bit line before the sense amplifier operates. For memory cells which do not utilize an access transistor, an isolation transistor may be placed in the bit line located between and serially connection the portion of the bit line from the sense amplifier to the isolation transistor and the portion of the bit line from the isolation transistor to the memory cell. The isolation transistor, normally conducting, is switched off after the predetermined time past the time the bit line begins to discharge through the memory cell, thereby isolating the memory cell from the sense amplifier before a sensing operation begins.
摘要:
The invention is related to methods and apparatus for providing a resistance variable memory element with improved data retention and switching characteristics. According to an embodiment of the invention a resistance variable memory element is provided having at least one silver-selenide layer in between glass layers, wherein at least one of the glass layers is a chalcogenide glass, preferably having a GexSe100−x composition.
摘要翻译:本发明涉及用于提供具有改进的数据保持和切换特性的电阻可变存储元件的方法和装置。 根据本发明的实施例,提供了一种电阻可变存储元件,其在玻璃层之间具有至少一个硒化银层,其中至少一个玻璃层是硫族化物玻璃,优选具有Ge x 100< 100< 100>组合物。
摘要:
A method for controlling silver doping of a chalcogenide glass in a resistance variable memory element is disclosed herein. The method includes forming a thin metal containing layer having a thickness of less than about 250 Angstroms over a second chalcogenide glass layer, formed over a first metal containing layer, formed over a first chalcogenide glass layer. The thin metal containing layer preferably is a silver layer. An electrode may be formed over the thin silver layer. The electrode preferably does not contain silver.
摘要:
A multi-stage process for drying and curing substrates coated with liquid waterborne basecoat and a topcoat includes: (a) applying a liquid waterborne basecoating composition to the substrate surface; (b) exposing the basecoating composition to air having a temperature ranging from ambient to about 40° C. for a period of about 30 seconds to volatilize at least a portion of volatile material from the liquid basecoating composition, the velocity of the air at the surface of the basecoating composition being about 0.3 to about 1 meter per second; (c) applying heated air to the basecoating composition for a period ranging from about 30 to about 45 seconds, the velocity of the air at the surface of the basecoating composition ranging from about 1.5 to 15 meters per second, the air having a temperature ranging from about 30° C. to about 90° C.; (d) applying infrared radiation and heated air simultaneously to the basecoating composition for a period of ranging from about 30 to 45 seconds, the velocity of the air at the surface of the basecoating ranging from about 1.5 to 5 meters per second, the air having a temperature ranging from about 30° C. to about 60° C., such that a sufficiently dried basecoat is formed upon the surface of the substrate; (e) applying a topcoating composition over the basecoat; and (f) simultaneously curing the basecoating composition and the topcoating composition together.