摘要:
Provided is a semiconductor device capable of controlling an on-die-termination (ODT) circuit and an off-chip-driver (OCD) circuit and a control method used by the semiconductor device. The semiconductor device includes a control code generation unit generating a control code in response to a control signal, an addition unit adding an adjustment code to the control code to produce an adjusted control code, and an ODT circuit, wherein an impedance of the ODT circuit is adjusted in response to the adjusted control code. The semiconductor device can adjust the control code more precisely by adding or subtracting the adjustment code to or from the control code. Accordingly, the impedance of an OCD circuit or ODT circuit can be adjusted more precisely.
摘要:
We describe an input buffer having a stabilized operating point and an associated method. An input buffer may include a first differential amplifying unit to generate a first output signal having a first operating point and a second differential amplifying unit to generate a second output signal having a second operating point. An output control circuit varies respective weights of the first and second output signals responsive to an output control signal. The first differential amplifying unit may operate responsive to a reference voltage and an input voltage signal. The second differential amplifying unit may operate responsive to the reference voltage and the input voltage signal. The first operating point may be relatively higher than the second operating point.
摘要:
A semiconductor memory device includes a memory cell array to store data; a data input portion to output data to the memory cell array in response to a write control signal; a data output portion to output data from the memory cell array in response to a read control signal; a data I/O gate to transmit data outputted from the data input portion to the memory cell array in response to the write control signal, and transmitting data outputted from the memory cell array to the data output portion in response to the read control signal; and a data I/O controller to generate the read control signal and the write control signal having a smaller minimum cycle time than a minimum cycle time of the read control signal. The semiconductor memory device has an improved operation performance compared to one having a low operation frequency within an operable frequency range.
摘要:
A voltage generating circuit and method thereof for preventing a current from flowing from a voltage generating node to a pumping node in transiting of the circuit from an active operation to a pre-charge operation are provided. The voltage generating circuit comprises a pre-charge circuit for pre-charging a pumping node and a voltage transmitting control node during a pre-charge operation; a voltage pumping circuit for pumping a signal at the pumping node during an active operation; a voltage transmitting circuit for transmitting the signal from the pumping node to a voltage generating node in response to a signal at the voltage transmitting control node during the active operation; and a countercurrent preventing circuit for varying the signal at the voltage transmitting control node based on the signal at the pumping node during the pre-charge operation and for preventing a current from flowing between the pumping node and the voltage transmitting control node during the active operation.
摘要:
A memory system and a method of reading and writing data to a memory device provide byte-by-byte write data insertion without adding extra pins or balls to the packaged device. Accordingly, the high frequency performance of the device can be improved.
摘要:
A memory system and a method of reading and writing data to a memory device selectively operate in both a single DQS mode with data inversion, and in a dual DQS mode. The device and method employ data strobe mode changing means for selectively changing operation of the memory device between a first data strobe mode and a second data strobe mode.
摘要:
Integrated circuits are provided that include a voltage control circuit that is configured to adjust a circuit voltage that is outside a predetermined circuit voltage specification to within the predetermined circuit voltage specification so that the integrated circuit device is no longer defective. Integrated circuits are also provided that include a signal time delay control circuit that is configured to adjust a circuit delay time that is outside a predetermined circuit delay time specification to within the predetermined circuit delay time specification so that the integrated circuit device is no longer defective. Corresponding methods of operation are also provided.
摘要:
A memory device includes a clock receiving block, a data transceiver block, a phase detection block, and a phase information transmitter. The clock receiving block is configured to receive a clock signal from a memory controller through a clock signal line and generate a data sampling clock signal and an edge sampling clock signal. The data transceiver block is configured to receive a data signal from the memory controller through a data signal line. The phase detection block is configured to generate phase information in response to the data sampling clock signal, the edge sampling clock signal and the data signal. The phase information transmitter is configured to transmit the phase information to the memory controller through a phase information signal line that is separate from the data signal line.
摘要:
A level detector, an internal voltage generator including the level detector, and a semiconductor memory device including the internal voltage generator are provided. The internal voltage generator includes a level detector that compares a threshold voltage that varies with temperature with an internal voltage to output a comparative voltage, and an internal voltage driver that adjusts an external supply voltage in response to the comparative voltage and that outputs an internal voltage.
摘要:
A bitline sense amplifier includes a pre-sensing unit and an amplification unit. The pre-sensing unit is connected to a first bitline and a second bitline, and is configured to perform a pre-sensing operation by controlling a voltage level of the second bitline based on at least one pre-sensing voltage and variation of a voltage level of the first bitline. The amplification unit is configured to perform a main amplification operation by amplifying a pre-sensed voltage difference based on a first voltage signal and a second voltage signal. The pre-sensed voltage difference indicates a difference between the voltage level of the first bitline and the voltage level of the second bitline after the pre-sensing operation.