摘要:
In one exemplary embodiment of the invention, a semiconductor structure includes: a substrate; and a plurality of devices at least partially overlying the substrate, where the plurality of devices include a first device coupled to a second device via a first raised source/drain having a first length, where the first device is further coupled to a second raised source/drain having a second length, where the first device comprises a transistor, where the first raised source/drain and the second raised source/drain at least partially overly the substrate, where the second raised source/drain comprises a terminal electrical contact, where the second length is greater than the first length.
摘要:
A method of fabricating an electronic structure is provided that includes forming a first conductivity doped first semiconductor material on the SOI semiconductor layer of a substrate. The SOI semiconductor layer has a thickness of less than 10 nm. The first conductivity in-situ doped first semiconductor material is removed from a first portion of the SOI semiconductor layer, wherein a remaining portion of the first conductivity in-situ doped first semiconductor material is present on a second portion of SOI semiconductor layer. A second conductivity in-situ doped second semiconductor material is formed on the first portion of the SOI semiconductor layer, wherein a mask prohibits the second conductivity in-situ doped semiconductor material from being formed on the second portion of the SOI semiconductor layer. The dopants from the first and second conductivity in-situ doped semiconductor materials are diffused into the first semiconductor layer to form dopant regions.
摘要:
A method of forming a transistor device includes forming a patterned gate structure over a semiconductor substrate; forming a spacer layer over the semiconductor substrate and patterned gate structure; removing horizontally disposed portions of the spacer layer so as to form a vertical sidewall spacer adjacent the patterned gate structure; and forming a raised source/drain (RSD) structure over the semiconductor substrate and adjacent the vertical sidewall spacer, wherein the RSD structure has a substantially vertical sidewall profile so as to abut the vertical sidewall spacer and produce one of a compressive and a tensile strain on a channel region of the semiconductor substrate below the patterned gate structure.
摘要:
A method for fabricating an FET device characterized as being a tunnel FET (TFET) device is disclosed. The method includes processing a gate-stack, and processing the adjoining source and drain junctions, which are of a first conductivity type. A hardmask is formed covering the gate-stack and the junctions. A tilted angle ion implantation is performed which is received by a first portion of the hardmask, and it is not received by a second portion of the hardmask due to the shadowing of the gate-stack. The implanted portion of the hardmask is removed and one of the junctions is exposed. The junction is etched away, and a new junction, typically in-situ doped to a second conductivity type, is epitaxially grown into its place. A device characterized as being an asymmetrical TFET is also disclosed. The source and drain junctions of the TFET are of different conductivity types, and the TFET also includes spacer formations in a manner that the spacer formation on one side of the gate-stack is thinner than on the other side of the gate-stack.
摘要:
A device and method for fabrication of fin devices for an integrated circuit includes forming fin structures in a semiconductor material of a semiconductor device wherein the semiconductor material is exposed on sidewalls of the fin structures. A donor material is epitaxially deposited on the exposed sidewalls of the fin structures. A condensation process is applied to move the donor material through the sidewalls into the semiconductor material such that accommodation of the donor material causes a strain in the semiconductor material of the fin structures. The donor material is removed, and a field effect transistor is formed from the fin structure.
摘要:
A high-performance semiconductor structure and a method of fabricating such a structure are provided. The semiconductor structure includes at least one gate stack, e.g., FET, located on an upper surface of a semiconductor substrate. The structure further includes a first epitaxy semiconductor material that induces a strain upon a channel of the at least one gate stack. The first epitaxy semiconductor material is located at a footprint of the at least one gate stack substantially within a pair of recessed regions in the substrate which are present on opposite sides of the at least one gate stack. A diffused extension region is located within an upper surface of said first epitaxy semiconductor material in each of the recessed regions. The structure further includes a second epitaxy semiconductor material located on an upper surface of the diffused extension region. The second epitaxy semiconductor material has a higher dopant concentration than the first epitaxy semiconductor material.
摘要:
A device and method for fabrication of fin devices for an integrated circuit includes forming fin structures in a semiconductor material of a semiconductor device wherein the semiconductor material is exposed on sidewalls of the fin structures. A donor material is epitaxially deposited on the exposed sidewalls of the fin structures. A condensation process is applied to move the donor material through the sidewalls into the semiconductor material such that accommodation of the donor material causes a strain in the semiconductor material of the fin structures. The donor material is removed, and a field effect transistor is formed from the fin structure.
摘要:
A circuit structure is disclosed which contains least one each of three different kinds of devices in a silicon layer on insulator (SOI): a planar NFET device, a planar PFET device, and a FinFET device. A trench isolation surrounds the planar NFET device and the planar PFET device penetrating through the SOI and abutting the insulator. Each of the three different kinds of devices contain a high-k gate dielectric layer and a mid-gap gate metal layer, each containing an identical high-k material and an identical mid-gap metal. Each of the three different kinds of devices have an individually optimized threshold value. A method for fabricating a circuit structure is also disclosed, which method involves defining portions in SOI respectively for three different kinds of devices: for a planar NFET device, for a planar PFET device, and for a FinFET device. The method also includes depositing in common a high-k gate dielectric layer and a mid-gap gate metal layer, and using workfunction modifying layers to individually adjust thresholds for the various kinds of devices.
摘要:
In one embodiment, a method is provided for forming stress in a semiconductor device. The semiconductor device may include a gate structure on a substrate, wherein the gate structure includes at least one dummy material that is present on a gate conductor. A conformal dielectric layer is formed atop the semiconductor device, and an interlevel dielectric layer is formed on the conformal dielectric layer. The interlevel dielectric layer may be planarized to expose at least a portion of the conformal dielectric layer that is atop the gate structure, in which the exposed portion of the conformal dielectric layer may be removed to expose an upper surface of the gate structure. The upper surface of the gate structure may be removed to expose the gate conductor. A stress inducing material may then be formed atop the at least one gate conductor.
摘要:
A semiconductor device is formed by providing a substrate and forming a semiconductor-containing layer atop the substrate. A mask having a plurality of openings is then formed atop the semiconductor-containing layer, wherein adjacent openings of the plurality of openings of the mask are separated by a minimum feature dimension. Thereafter, an angled ion implantation is performed to introduce dopants to a first portion of the semiconductor-containing layer, wherein a remaining portion that is substantially free of dopants is present beneath the mask. The first portion of the semiconductor-containing layer containing the dopants is removed selective to the remaining portion of semiconductor-containing layer that is substantially free of the dopants to provide a pattern of sublithographic dimension, and the pattern is transferred into the substrate to provide a fin structure of sublithographic dimension.