Abstract:
The present invention provides an OCT technique that permits tomographic observation of a biological body parts that is difficult to restrain and also provides a tomographic observation technique for the observation of a constrainable part that does not require constraint and remove the burden from biological body. A wavelength-tunable light generator (wavelength-tunable light source) is employed as the light source of the optical coherence tomography device. The wavelength-tunable light generator has a wave number tunable range width of at least 4.7×10−2 μm−1 and an emitted-light frequency width of no more than 13 GHz, for example, and includes means capable of changing the wave number stepwise at wave number intervals of no more than 3.1×10−4 μm−1 and time intervals of no more than 530 μs.
Abstract:
The present invention provides an OCT technique that permits tomographic observation of a biological body parts that is difficult to restrain and also provides a tomographic observation technique for the observation of a constrainable part that does not require constraint and remove the burden from biological body. A wavelength-tunable light generator (wavelength-tunable light source) is employed as the light source of the optical coherence tomography device. The wavelength-tunable light generator has a wave number tunable range width of at least 4.7×10−2 μm−1 and an emitted-light frequency width of no more than 13 GHz, for example, and includes means capable of changing the wave number stepwise at wave number intervals of no more than 3.1×10−4 μm−1 and time intervals of no more than 530 μs.
Abstract:
An optical switch includes an input port into which a multiplexed optical signal is input; a dispersing unit that, according to wavelength, disperses the multiplexed optical signal into a plurality of optical signals that are each dispersed in a unique direction; a converging unit that converges the dispersed optical signals; plural mirrors that are arrayed forming a single row in a plane and reflecting the converged optical signals, respectively; and plural output ports through which the reflected optical signals are output. Each of the mirrors has a concave reflective surface that is in the plane and of a predetermined curvature about an axis parallel to the plane.
Abstract:
The invention relates to a process for manufacturing plasma display panel and a substrate holder, preventing an occurrence of dust giving an unfavorable effect in a forming process of a film on a substrate of a plasma display panel in a film forming apparatus. When forming the film, a substrate (3) and a dummy substrate (35) are held by a first substrate holder (31) composed of a supporter sustaining underneath the substrate and a restrictor restricting a position of the substrates (3) in a plane direction, and a second substrate holder (32) sustaining the first substrate holder (31).
Abstract:
An optical apparatus of the invention has a fusion splice portion where respective ends of two optical fibers each having a core, a cladding, and a UV coat portion provided on the outside of the cladding are fusion spliced, and a re-coat portion which re-coats a portion where the UV coat portion is removed in the vicinity of the fusion splice portion is formed using a material capable of absorbing light radiated from the fusion splice portion. As a result light which is radiated from the fusion splice portion can be reliably prevented from coupling into another optical fiber adjacent to an outside of the re-coat portion.
Abstract:
A housing 20 is equipped for supporting, from a side, a platform of a wavelength selection device comprising an input/output port 10, a collimator 11, an expanding optical system 12, a spectroscopic element, a collecting optical system 14 and a micro electro mechanical system (MEMS) mirror array 15. Because the above noted optical member is supported from the side only, influences of a thermal expansion is limited to the height direction of the optical member and the optical axis direction. By these aspects, the influence of thermal expansion is limited to a two-dimensional from a common three-dimensional, thereby enabling a design of a countermeasure to an influence of a thermal expansion. Also, the support from the side does not create a dead space thereby making the wavelength selection device compact.
Abstract:
The invention relates to a process for manufacturing plasma display panel and a substrate holder, preventing an occurrence of dust giving an unfavorable effect in a forming process of a film on a substrate of a plasma display panel in a film forming apparatus. When forming the film, a substrate (3) and a dummy substrate (35) are held by a first substrate holder (31) composed of a supporter sustaining underneath the substrate and a restrictor restricting a position of the substrates (3) in a plane direction, and a second substrate holder (32) sustaining the first substrate holder (31).
Abstract:
A chromatic dispersion compensator of present invention includes a high-refractive-index VIPA plate, a three-dimensional mirror, and a control unit. The high-refractive-index VIPA plate is made of a material such as silicon having a refractive index higher than that of optical glass and is able to output incident lights toward different directions according to wavelength. The three-dimensional mirror reflects the light of each wavelength emitted from the high-refractive-index VIPA plate, at a predetermined position and returns the light to the VIPA plate. The control unit controls a temperature of the high-refractive-index VIPA plate at a constant level while controlling the position of the three-dimensional mirror corresponding to a chromatic dispersion compensation amount. Thereby, larger chromatic dispersion can be compensated while a decrease in transmission bandwidth is suppressed.
Abstract:
An image processing apparatus of the present invention comprising (a) a first signal processing circuit for applying gamma correction to an n-bit (n: a natural number) digital signal inputted as a video signal and for converting the n-bit digital signal into an m-bit (m>n, m: a natural number) digital signal, and (b) a second signal processing circuit for adding a noise signal, which is used for pseudo contour reduction, into the m-bit digital signal from the first signal processing circuit and for outputting a Q-bit (Q: a natural number) digital signal, which is obtained from rounding off a less significant (m−Q) bit (Q≦n) from the m-bit digital signal, to a display section.
Abstract:
The optical receiver includes: an optical input port for receiving WDM signals; a transmittable-wavelength-variable filtering unit which transmits, of the received WDM signals, a light signal in a predetermined transmittable wavelength bandwidth with a desired central wavelength of λi (i=1 to n: n is an integer number greater than 2); an optical output port which outputs the remaining light signals at wavelengths (λi) (k=1 to n; k≠i) untransmittable through the transmittable-wavelength-variable filtering unit; and a control unit which controls the central wavelength so that the level of the light signal passing through the transmittable-wavelength-variable filtering unit is the maximum. It is whereby possible to flexibly accommodate changes in number of channels combined in a WDM system, and to adaptively minimize ASE light leaking into the photoreceptor of the optical receiver even in a CWDM system with wide channel spacing.