摘要:
The present invention has its object to provide a technique which can eliminate HC poisoning of an exhaust gas purification catalyst in a suitable manner in a fuel injection control system of an internal combustion engine which can use a liquid fuel and a gas fuel. In order to achieve this object, the present invention is constructed such that in the fuel injection control system of an internal combustion engine capable of using a liquid fuel and a gas fuel, when HC poisoning of the exhaust gas purification catalyst has occurred, HC poisoning is intended to be eliminated by causing the internal combustion engine to operate by the use of the gas fuel if the temperature of the exhaust gas purification catalyst is less than a specified value, whereas the elimination of HC poisoning is intended by causing the internal combustion engine to operate by the use of the liquid fuel if the temperature of an exhaust gas purification device is not less than the specified value.
摘要:
A method for producing a semiconductor optical device includes the steps of growing a semiconductor stacked layer including an etch stop layer and a plurality of semiconductor layers on a major surface of a substrate; forming a mask layer on a top surface of the semiconductor stacked layer so that a tip portion of each of protrusions that protrude from the top surface among protrusions generated in the step of growing the semiconductor stacked layer is exposed; etching the protrusion by wet etching using the mask layer; after etching the protrusion by wet etching, removing the protrusion by dry etching; and removing the mask layer from the top surface, after removing the protrusion by dry etching.
摘要:
An operation device comprises: a plurality of operation members attached to a common supporting member; and a plurality of inserting components having the same configurations with one another. The operation members include latching apertures for securing the inserting components to the operation members and include a plurality of kinds of structure to be attached to the common supporting member so that opening directions of the latching apertures are different from one another. The inserting components include a plurality of latching projections that protrude outward from a main body, and have configurations that can engage the latching apertures in any one of the operation members. The latching projections protrude from the main body in a plurality of directions corresponding to the opening directions of the latching apertures so that any one of the latching projections can engage the latching aperture in any one of the operation members.
摘要:
In an internal combustion engine including an NSR catalyst and an SCR, to provide an exhaust purifying system that can limit aggravation of emissions by allowing the SCR to recover effectively from degraded performance caused by poisoning. An exhaust purifying system for an internal combustion engine capable of a lean burn operation includes an NSR catalyst disposed in an exhaust passage of the internal combustion engine; an SCR disposed downstream of the NSR catalyst; means for detecting sulfur poisoning of the SCR; and means for increasing a bed temperature of the SCR when the poisoning detecting means detects sulfur poisoning of the SCR. The temperature increasing means includes bank control, stoichiometric control, and rich spike control, any one of which is selected for performance according to an operating condition of the internal combustion engine.
摘要:
A NOX sensor degradation detection system includes: a three-way catalyst disposed in an exhaust passageway of an internal combustion engine; a selective reduction catalyst disposed in the exhaust passageway downstream of the three-way catalyst; a NOX sensor disposed in the exhaust passageway downstream of the selective reduction catalyst; and a controller configured to execute a rich-shift process that is a process for causing air/fuel ratio of exhaust gas that flows into the three-way catalyst to become rich, and to determine that the NOX sensor has degraded on a condition that a measurement value from the NOX sensor does not reach nor exceed a threshold value within a prescribed time that follows start of the rich-shift process. A degradation detection method for use in the system is also provided.
摘要:
The synchronous motor driving apparatus including position sensors provided in the synchronous motor, a current polarity detection circuit for detecting the polarities of the currents in the respective phase windings of the synchronous motor, an inverter driving the synchronous motor, a motor speed calculation unit calculating the rotational speed of the synchronous motor depending on the output signals from the position sensors, a speed control unit outputting a first voltage adjusting component (q-axis current command value Iq*) to cause the rotational speed of the synchronous motor to approach a speed command value and a phase control unit outputting a second voltage adjusting component (d-axis current command value Id*) to cause the phase differences between the phases of the position sensor signals and of the currents in the respective phase windings of the synchronous motor to become a predetermined value.
摘要:
An object is to provide an exhaust purifying system for an internal combustion engine having an NSR catalyst, which can inhibit emissions from being aggravated by blow-by of NOx. An exhaust purifying system for an internal combustion engine capable of a lean burn operation is provided. The exhaust purifying system includes: an NSR catalyst disposed in an exhaust passage of the internal combustion engine; an SCR disposed downstream of the NSR catalyst; a NOx sensor disposed downstream of the SCR, the NOx sensor producing an output according to an NH3 concentration; and rich spike means for performing a rich spike. The rich spike means starts the rich spike at a predetermined timing during a lean burn operation and terminates the rich spike at a timing when the NOx sensor issues a predetermined output characteristic indicative of a rise in the NH3 concentration.
摘要:
In order to prevent a short circuit of top and bottom arms of a motor driving IC when noise is added to six control signals for controlling six switching elements, there is provided a semiconductor device for driving a motor, being sealed with resin as one package and comprising: six switching elements for driving a three-phase motor; three output terminals for outputting voltages to the three-phase motor; at least one driving circuit for driving the six switching elements; three control signal input terminals; and a function) of generating six control signals for control of the six switching elements based on three control signals inputted through the three control signal input terminals.
摘要:
A motor driving semiconductor device has: six switching elements for driving a three-phase motor; three output terminals for applying output voltages to three terminals of coils of the three-phase motor; drive circuits for driving the six switching elements; and six control signal input terminals for receiving six control signals for on/off control of the six switching elements, wherein the motor driving semiconductor device is formed by sealing at least one semiconductor chip in one package with resin, and further includes a dead time generation function of generating a dead time relative to the six control signals.
摘要:
The synchronous motor driving apparatus including position sensors provided in the synchronous motor, a current polarity detection circuit for detecting the polarities of the currents in the respective phase windings of the synchronous motor, an inverter driving the synchronous motor, a motor speed calculation unit calculating the rotational speed of the synchronous motor depending on the output signals from the position sensors, a speed control unit outputting a first voltage adjusting component (q-axis current command value Iq*) to cause the rotational speed of the synchronous motor to approach a speed command value and a phase control unit outputting a second voltage adjusting component (d-axis current command value Id*) to cause the phase differences between the phases of the position sensor signals and of the currents in the respective phase windings of the synchronous motor to become a predetermined value.