Abstract:
A method of configuring and applying UE beam training gaps for simultaneous UE beam training and data reception in a beamforming wireless communication system is proposed. UE beam training gaps are configured by the base station for each UE. Typically, UE-specific data transmission can take place during the serving control beam time region. The UE beam training gaps are periods where UE-specific data transmission does not happen within the serving control beam time region. During each UE beam training gap, non-serving UE beam training can take place, where the UE performs intra-frequency reference signal measurements from serving and/or neighbor cells using various non-serving UE beams. The UE beam training gaps are configured and signaled to each UE, and each individual UE can have different data occupancy region within its serving CB time region.
Abstract:
A method of beam failure recovery for multi-beam operation in wireless communication systems with beamforming is proposed. Specifically, a four-step beam failure recovery procedure is proposed. In a first step of beam failure detection, UE detects a beam failure condition of the original serving beam pair link. In a second step of new candidate beam identification, UE performs measurements for candidate beam selection. In a third step of beam failure recovery request (BFRQ) transmission, UE transmits a BFRQ message to BS upon the triggering condition for BFRQ transmission is satisfied. In a fourth step of monitoring BS response, UE monitors BS response to decide the success or failure of the beam failure recovery.
Abstract:
A method of beam reciprocity state reporting and uplink beam management in wireless communication systems with beamforming is proposed. In one novel aspect, a BS configures one or more resource sets to a UE for uplink beam management. The one or more resource sets are allocated for UE to transmit UL reference signals using a number of UE beams. The number of UE beams to be trained is reported by the UE, e.g., via a “UE beam reciprocity state (update)” message. The BS also indicates whether a fixed UE TX beam or which UE TX beam is used for transmission, or indicates whether different UE TX beams are used for transmission of different resources in a resource set. The BS then feedback measurement results for UE to choose a proper TX beam.
Abstract:
A method deactivates secondary Component Carrier (CC) measurement in a communications apparatus providing wireless communications services via a first CC in a wireless network, wherein the communications apparatus includes a first signal processing component chain comprising a plurality of signal processing components and is configured for processing the RF signals for the first CC and a second signal processing component chain comprising a plurality of signal processing components. The method includes operations of determining a switch timing for turning on at least one of the signal processing components in the second signal processing component chain for performing a deactivated secondary CC measurement; performing the deactivated secondary CC measurement via the second signal processing component chain, wherein the secondary CC is not able to perform data transmission or reception during a deactivated state, and wherein the switch timing is determined according to a Discontinuous Reception (DRX) cycle.
Abstract:
A method of beam misalignment detection for wireless communication system with beamforming is proposed. To identify a misaligned beam, a relative beam quality degradation is applied by comparing a dedicated beam quality with a reference beam quality. The reference beam favors similar transmission path as the dedicated beam, and has better mobility robustness. In one embodiment, the reference beam is an associated control beam of the dedicated beam. To detect beam misalignment, a first dedicated beam SINR is compared with a second associated control beam SINR.
Abstract:
A network control device. A wireless communications module receives a plurality of first signals each including information regarding a preferred transmitting beam in a first beam level determined by a communications apparatus. A controller selects a group of communications apparatuses to join a 1-to-many beam training according to the received first signals and selects one or more transmitting beams in a second beam level to be trained. The communications apparatuses in the group have the same preferred transmitting beam in the first beam level and the transmitting beam(s) in the second beam level associates with the preferred transmitting beam in the first beam level. The wireless communications module further uses the transmitting beam(s) in turn to transmit signals to perform the 1-to-many beam training for training the transmitting beam(s) in the second beam level among the group of communications apparatuses at the same time.
Abstract:
In a communications apparatus first radio module communicates with a first wireless network and provides wireless communication services in compliance with a first RAT. A second radio module communicates with a second wireless network and provides wireless communication services in compliance with a second RAT. At least two antennas are shared by the first radio module and the second radio module. When the first radio module operates in an idle mode and when the timing of the first radio module performing a first receiving activity coincides with the timing of the second radio module performing a second receiving activity, the second radio module uses the antennas to perform the second receiving activity when a DRX cycle duration of the first radio module in the idle mode is shorter than a DRX cycle duration of the second radio module.
Abstract:
A method of providing spatial diversity for critical data delivery in a beamformed mmWave smallcell is proposed. The proposed spatial diversity scheme offers duplicate or incremental data/signal transmission and reception by using multiple different beams for the same source and destination. The proposed spatial diversity scheme can be combined with other diversity schemes in time, frequency, and code, etc. for the same purpose. In addition, the proposed spatial diversity scheme combines the physical-layer resources associated with the beams with other resources of the same or different protocol layers. By spatial signaling repetition to avoid Radio Link Failure (RLF) and Handover Failure (HOF), mobility robustness can be enhanced. Mission-critical and/or time-critical data delivery can also be achieved without relying on retransmission.
Abstract:
A user equipment (UE) receives and decodes a first erroneous transport block (TB) from a base station in a mobile communication network. The UE allocates a first soft buffer having a first buffer size. The first soft buffer is associated with a first HARQ process for storing the first TB. The UE then receives and decodes a second erroneous TB from the base station. The UE allocates a second soft buffer having a second buffer size. The second soft buffer is associated with a second HARQ process for storing the second TB. The UE releases a portion of the first soft buffer to be allocated as part of the second soft buffer. The dynamic buffer allocation method reduces mismatch between rate matching and soft buffer storing when the total number of HARQ processes is small. In addition, more HARQ processes can be supported when the corresponding TB size is small.
Abstract:
A communications apparatus. The RF signal processing device is capable of supporting carrier aggregation and configured to process RF signals. The baseband signal processing device is configured to process baseband signals. The processor is configured to control operations of the RF signal processing device and the baseband signal processing device. The processor further receives a power control signal from a peer communications apparatus, obtains an assigned transmission power which is assigned by the peer communications apparatus for the communications apparatus to transmit a reference signal according to information carried in the power control signal, determines a spectral efficiency estimation value of the communications apparatus and directs the RF signal processing device to transmit the reference signal with a reduced transmission power which is smaller than the assigned transmission power when the spectral efficiency estimation value is smaller than a predetermined threshold.