摘要:
Aspects of this disclosure relate to, in an example, a method that includes identifying a first block of video data in a first temporal location from a first view, wherein the first block is associated with a first disparity motion vector. The method also includes determining a motion vector predictor for a second motion vector associated with a second block of video data, wherein the motion vector predictor is based on the first disparity motion vector. When the second motion vector comprises a disparity motion vector, the method includes determining the motion vector predictor comprises scaling the first disparity motion vector to generate a scaled motion vector predictor, wherein scaling the first disparity motion vector comprises applying a scaling factor comprising a view distance of the second disparity motion vector divided by a view distance of the first motion vector to the first disparity motion vector.
摘要:
This disclosure relates to techniques for reducing a cost of coding prediction information in video coding. Video blocks in a generalized P/B (GPB) frame are encoded using up to two motion vectors calculated from reference pictures in two separate reference picture lists that are identical. When one of the reference picture lists is preferred over the other reference picture list, the preferred reference picture list may be used for unidirectional prediction, by default. When a GPB frame is enabled such that the first and second reference picture lists are identical, either of the first and second reference picture lists may be used for unidirectional prediction. The techniques include coding one or more syntax elements indicating that a video block is coded using one of the unidirectional prediction mode with respect to a reference picture in a reference picture list and the bidirectional prediction mode using less than two bits.
摘要:
This disclosure relates to techniques for reducing a cost of coding prediction information in video coding. Video blocks in a generalized P/B (GPB) frame are encoded using up to two motion vectors calculated from reference pictures in two separate reference picture lists that are identical. Video blocks of a GPB frame may, therefore, be encoded using a bidirectional prediction mode with a first motion vector from a reference picture in a first reference picture list and a second motion vector from the same or substantially similar reference picture in a second reference picture list. The techniques include jointly coding the first and second motion vectors for a video block of a GPB frame. The techniques include coding the first motion vector relative to a first motion predictor generated from a motion vector of a neighboring block, and coding the second motion vector relative to the first motion vector.
摘要:
In general, techniques are described for performing motion vector prediction for video coding. An apparatus comprising a motion compensation unit may implement the techniques. The motion compensation unit determines spatial candidate motion vectors (MVPs) associated with a current portion of a video frame and prunes the spatial candidate motion vectors to remove duplicates without removing a temporal candidate motion vector. The motion compensation unit selects one of the temporal candidate motion vector or one of the spatial candidate motion vectors remaining after pruning as a selected candidate motion vector based on a motion vector predictor (MVP) index signaled in a bitstream and performs motion compensation based on the selected candidate motion vector.
摘要:
In one example, a video decoder is configured to determine whether a component of a transform unit of a coding unit of video data includes at least one non-zero coefficient based on a codeword for the transform unit, determine whether the transform unit is split into sub-transform units based on the codeword, and decode the transform unit based on the determinations. In another example, a video encoder is configured to determine whether a component of a transform unit of a coding unit of video data includes at least one non-zero coefficient, determine whether the transform unit is split into sub-transform units, select a codeword from a variable length code table, wherein the variable length code table provides an indication that the codeword corresponds to the determinations, and provide the codeword for the transform unit.
摘要:
In one example, an apparatus includes a video encoder configured to partition a block of video data into a first partition and a second partition using a geometric motion partition line, calculate a slope value and a y-intercept value of the geometric motion partition line, wherein the slope value and the y-intercept value comprise integer values, calculate a mask indicative of pixels of the block in the first partition and pixels of the block in the second partition, encode the first partition and the second partition based on the mask, and output the encoded first partition, the encoded second partition, the slope value, and the y-intercept value. This may allow for a fixed point implementation. A video decoder may receive the slope and y-intercept values to calculate the mask and decode the block based on the mask.
摘要:
An offset can be applied to intermediate values obtained while performing an interpolation filtering operation such that applying the offset reduces the bitdepth of the intermediate value. The intermediate value can be stored with the reduced bitdepth, and when retrieved, the offset can be added back such that future calculation can be performed using the intermediate value with the original bitdepth.
摘要:
Aspects of this disclosure relate to a method of coding video data. In an example, the method includes identifying a first block of video data in a first temporal location from a first view, wherein the first block of video data is associated with a first temporal motion vector. The method also includes determining, when a second motion vector associated with a second block of video data comprises a temporal motion vector and the second block is from a second view, a motion vector predictor for the second motion vector based on the first temporal motion vector. The method also includes coding prediction data for the second block using the motion vector predictor.
摘要:
In general, techniques are described for performing motion vector prediction for video coding. An apparatus comprising a motion compensation unit may implement the techniques. The motion compensation unit determines spatial candidate motion vectors (MVPs) associated with a current portion of a video frame and prunes the spatial candidate motion vectors to remove duplicates without removing a temporal candidate motion vector. The motion compensation unit selects one of the temporal candidate motion vector or one of the spatial candidate motion vectors remaining after pruning as a selected candidate motion vector based on a motion vector predictor (MVP) index signaled in a bitstream and performs motion compensation based on the selected candidate motion vector.
摘要:
During a video coding process, a prediction block is generated for a CU. The CU has two or more prediction units. A computing device determines, based on sizes of one or more of the prediction units, whether to perform a smoothing operation on samples in a transition zone of the prediction block. The transition zone is located at a boundary between samples of the prediction block associated with different prediction units. If the computing device makes the determination to perform the smoothing operation, the smoothing operation is performed to smooth samples of the prediction block in the transition zone.