Abstract:
A method and medical device for generating a template that includes sensing a cardiac signal from a plurality of electrodes, determining a plurality of beats in response to the sensed cardiac signal, determining whether to store a beat of the plurality of beats in a subgroup of a plurality of subgroups for storing beats, determining whether a number of beats stored in one of the plurality of subgroups exceeds a subgroup threshold, and generating a template in response to beats stored in the one of the plurality of subgroups that exceeds the subgroup threshold.
Abstract:
A method and medical device for determining sensing vectors that includes sensing cardiac signals from a plurality of electrodes, the plurality of electrodes forming a plurality of sensing vectors, setting a blanking period and a blanking period adjustment window for the plurality of sensing vectors in response to the sensed cardiac signals, determining first signal differences during the blanking period adjustment window, and adjusting the blanking period in response to the determined first signal differences.
Abstract:
Methods and/or devices used in delivering cardiac resynchronization therapy based on a plurality of device parameters (e.g., A-V delay, V-V delay, etc.) are optimized by setting a device parameter based on selection data. The selection data may be acquired by acquiring temporal fiducial points (e.g., heart sounds) associated with at least a part of a systolic portion of at least one cardiac cycle and/or temporal fiducial points associated with at least a part of a diastolic portion of the at least one cardiac cycle for each of a plurality of electrode vector configurations, and extracting measurements from the intracardiac impedance signal acquired for each of a plurality of electrode vector configurations based on the temporal fiducial points. The acquired selection data may be scored and used to optimize the device parameter.
Abstract:
A medical device coupled to extracardiac electrodes is configured to analyze a cardiac electrical signal over a signal analysis segment to determine if shockable rhythm classification criteria are met, determine that TWOS detection criteria are met for the signal analysis segment when a predetermined number of TWOS analysis windows are classified as TWOS, and classify the signal analysis segment as non-shockable in response to determining that the TWOS detection criteria are met.
Abstract:
A method and medical device for detecting a cardiac event that includes sensing cardiac signals from a plurality of electrodes, the plurality of electrodes forming a first sensing vector and a second sensing vector, determining, in response to the cardiac event being identified as a shockable event, a first R-wave morphology corresponding to R-waves of a next interval subsequently sensed along the first sensing vector during the predetermined sensing window and a second R-wave morphology corresponding to R-waves of a next interval subsequently sensed along the second sensing vector, determining whether the next interval subsequently sensed along the first sensing vector and the next interval subsequently sensed along the second sensing vector satisfy a morphology metric, and identifying the cardiac event as one of a monomorphic ventricular tachycardia and a polymorphic ventricular tachycardia in response to the determined first R-wave morphology, second R-wave morphology, and the next interval subsequently sensed along the first sensing vector and the next interval subsequently sensed along the second sensing vector not satisfying the morphology metric.
Abstract:
An implantable medical device system includes an implantable cardioverter defibrillator (ICD) for detecting and treating ventricular tachycardia (VT). The ICD includes a sensing module for sensing a cardiac signal from selected cardiac signal sensing vectors. A control module generates morphology templates of the cardiac signals for multiple patient postures for each of the available sensing vectors. A cardiac signal received during an unknown cardiac rhythm is compared to the morphology templates without determining a current posture of the patient. The unknown cardiac rhythm is detected and classified as supraventricular tachycardia in response to the cardiac signal matching at least one of the morphology templates.
Abstract:
A method and medical device for determining sensing vectors that includes sensing cardiac signals from a plurality of electrodes, the plurality of electrodes forming a plurality of sensing vectors, setting a blanking period and a blanking period adjustment window for the plurality of sensing vectors in response to the sensed cardiac signals, determining first signal differences during the blanking period adjustment window, and adjusting the blanking period in response to the determined first signal differences.
Abstract:
Methods and/or devices used in delivering cardiac resynchronization therapy based on a plurality of device parameters (e.g., A-V delay, V-V delay, etc.) are optimized by setting a device parameter based on selection data. The selection data may be acquired by acquiring temporal fiducial points (e.g., heart sounds) associated with at least a part of a systolic portion of at least one cardiac cycle and/or temporal fiducial points associated with at least a part of a diastolic portion of the at least one cardiac cycle for each of a plurality of electrode vector configurations, and extracting measurements from the intracardiac impedance signal acquired for each of a plurality of electrode vector configurations based on the temporal fiducial points. The acquired selection data may be scored and used to optimize the device parameter.
Abstract:
A medical device and associated method for classifying an unknown cardiac signal operate to sense a cardiac signal over known cardiac cycles and generate a template of the known cardiac cycles. An unknown cardiac signal is sensed over an unknown cardiac cycle. A template alignment point and an unknown cardiac signal alignment point are identified by using a fourth order difference signal. The template and the unknown cardiac signal are aligned across an alignment window by aligning the template alignment point and the unknown cardiac signal alignment point. A morphology match metric measuring a similarity between the aligned template and the unknown cardiac signal is computed.
Abstract:
Techniques and systems for monitoring cardiac arrhythmias and delivering electrical stimulation therapy using a subcutaneous implantable cardioverter defibrillator (SICD) and a leadless pacing device (LPD) are described. For example, the SICD may detect a tachyarrhythmia within a first electrical signal from a heart and determine, based on the tachyarrhythmia, to deliver anti-tachyarrhythmia shock therapy to the patient to treat the detected arrhythmia. The LPD may receive communication from the SICD requesting the LPD deliver anti-tachycardia pacing to the heart and determine, based on a second electrical signal from the heart sensed by the LPD, whether to deliver anti-tachycardia pacing (ATP) to the heart. In this manner, the SICD and LPD may communicate to coordinate ATP and/or cardioversion/defibrillation therapy. In another example, the LPD may be configured to deliver post-shock pacing after detecting delivery of anti-tachyarrhythmia shock therapy.