Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in which a user equipment performs an inter-radio access technology (RAT) mobility procedure from a first network to a second network while idle mode signaling reduction (ISR) is active, locally deactivates ISR in connection with completion of the inter-RAT mobility procedure, and initiates a location management procedure in the second network. Depending on the respective type of the first and second network, and the connection state of the UE with respect to the first network, the mobility procedure may be performed in response to a mobility command received from the first network, or in response to a mobility condition of the first network as detected by the UE.
Abstract:
Certain aspects of the present disclosure relate to allocating user equipment (UE) processing capability among multiple access nodes. In an aspect, processing capability of a UE may be determined. When the UE is in communication with at least a first access node and a second access node, a first allocation of the UE processing capability for the first access node or a second allocation of the UE processing capability for the second access node may be determined. Resources may be assigned for the UE based at least in part on the first allocation or the second allocation. In an aspect, the first access node and the second access node may negotiate to determine the first allocation or the second allocation. In an aspect, the first allocation or the second allocation may be determined based on a previously-configured rule associated with a category of the UE.
Abstract:
Methods and apparatus for performing reference signal (RS) metric measurements in different parts of a channel bandwidth are described. One example method generally includes receiving signaling indicating one or more frequency bands within an operating frequency band of a current serving cell for performing reference signal (RS) metric measurements, performing the measurements on the one or more frequency bands, and reporting the measurements.
Abstract:
Managing of secondary carriers for a multicarrier user equipment (UE) is described in which the UE initiates or provides input for activation and deactivation of selected secondary cells in a carrier aggregation depending on allocation or provisioning of UE radio frequency resources.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may transmit a message to a network entity, such as a base station, indicating a capability of the UE to support multiple supplemental uplink frequency bands bundled to a serving cell. The UE may transmit the capability in a capability report with other capability information, or independent of a capability report. The UE may receive an information element (IE) in control signaling. The IE may indicate a set of supplemental uplink frequency bands for the serving cell. Each supplemental uplink frequency band may span one or more supplemental uplink carriers. The UE may receive additional control signaling scheduling one or more uplink transmissions on at least one supplemental uplink frequency band for the serving cell.
Abstract:
Certain aspects of the present disclosure provide techniques for wireless communication by a user equipment (UE), generally including receiving, from a network entity, a configuration for a first downlink (DL) bandwidth part (BWP), a first control resource set (CORESET) configured on the first DL BWP, and one or more first search space (SS) sets within the first CORESET, receiving, from the network entity, a configuration for a second downlink BWP, a second CORESET configured on the second DL BWP, and one or more second SS sets within the second CORESET configured on a second DL BWP, and performing one or more idle mode or inactive mode procedures on the first DL BWP or the second DL BWP, based on signaling received while the UE is in an idle state or an inactive state.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive a configuration, for a multicast broadcast service (MBS) single frequency network (SFN) area, indicating configuration information for one or more multicast traffic channels. The UE may receive, in accordance with the configuration, a physical downlink control channel (PDCCH) communication scheduling an MBS SFN data communication associated with a multicast traffic channel, of the one or more multicast traffic channels. The UE may receive the MBS SFN data communication via a physical downlink shared channel (PDSCH) that is associated with both SFN communications and unicast communications or that is associated with only MBS SFN communications. Numerous other aspects are provided.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine an antenna switching capability for the UE that relates to a capability of the UE to switch an antenna for a plurality of bands that are included in a band combination of a set of band combinations supported by the UE, wherein at least two bands of the plurality of bands correspond to a first radio access technology (RAT) and a second RAT respectively. The UE may signal the set of band combinations and the antenna switching capability to a base station. Numerous other aspects are provided.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, from a base station, information that configures multiple random access channel (RACH) partitions, wherein the multiple RACH partitions are each associated with a respective combination of one or more RACH features. The UE may select, from the multiple RACH partitions, a RACH partition based at least in part on the UE satisfying one or more criteria for the combination of one or more RACH features associated with the RACH partition. The UE may transmit, to the base station, a preamble on physical RACH (PRACH) resources associated with the RACH partition to initiate a RACH procedure supporting the combination of one or more RACH features associated with the RACH partition. Numerous other aspects are described.
Abstract:
This disclosure provides systems, methods, apparatuses and computer-readable medium for wireless communication. In some aspects, a user equipment (UE) may receive, from a first base station (BS) associated with a fifth generation New Radio (5G NR) radio access technology (RAT), a command of mobility from the 5G NR RAT to a second RAT. The UE may determine that the command of mobility is for voice fallback. The UE may transmit, to a second BS associated with the second RAT and based at least in part on determining that the command of mobility is for voice fallback, a radio resource control (RRC) connection request communication for attempting to communicatively connect with the second BS for voice fallback.