摘要:
The present invention provides an RF transmission leakage mitigator for use with a full-duplex, wireless transceiver. In one embodiment, the RF transmission leakage mitigator includes an inversion generator configured to provide an RF transmission inversion signal of an interfering transceiver RF transmission to a receiving portion of the transceiver thereby creating a residual leakage signal. Additionally, the RF transmission leakage mitigator also includes a residual processor coupled to the inversion generator and configured to adjust the RF transmission inversion signal of the interfering transceiver RF transmission based on reducing the residual leakage signal to a specified level.
摘要:
Systems and methods are provided for calibrating a digital predistorter in an integrated transceiver circuit. A digital transmitter path provides a signal from a digital input. The transmitter path includes a digital predistorter that predistorts the digital input to mitigate nonlinearities associated with a power amplifier. The integrated transceiver circuit further includes a receiver path associated with the digital transmitter path. A coupling element provides the signal from the transmitter path to the receiver path. A signal evaluator determines values for at least one parameter associated with the digital predistorter based on the signal.
摘要:
Methods and apparatus to perform radio frequency (RF) analog-to-digital conversion are described. According to one example, a receiver includes an amplifier to amplify received analog RF signals and a mixer-free circuit for converting the received analog RF signals to digital signals.
摘要:
A time-to-digital converter (TDC), a system-on-chip including a TDC, a method of phase detection for use in synthesizing a clock signal and a non-linearity corrector for a TDC. In one embodiment, the TDC includes a chain of delay elements configured to receive a clock signal and generate delayed clock signals. Each one of the delay elements includes: (1) a non-inverting buffer configured to delay the clock signal by about twice a delay of an inverter to provide a buffer-delayed clock signal and (2) a first transmission gate coupled to the non-inverting buffer and configured to delay the clock signal by about the delay of an inverter to provide a first gate-delayed clock signal.
摘要:
System and method for increasing the frequency tuning range of a RF/microwave LC oscillator. A preferred embodiment comprises a voltage controlled oscillator (VCO) configured to generate an output signal at a frequency that is dependent upon a magnitude of an input voltage level and an effective inductance of an inductive load and a variable inductor coupled to the VCO. The variable inductor comprises a primary inductor coupled to the VCO to produce a magnetic field based upon a current flowing through the primary inductor and a secondary inductor magnetically coupled to the primary inductor, the secondary inductor to affect the magnitude of the effective inductance of the primary inductor.
摘要:
System and method for providing type-II (and higher order) phase-locked loops (PLLs) with a fast signal acquisition mode. A preferred embodiment comprises a loop filter with a proportional loop gain path (proportional loop gain circuit 1115) and an integral loop gain block (integral loop gain block 1120). The proportional loop gain path is used during signal acquisition to provide large loop bandwidth, hence fast signal acquisition of a desired signal. Then, during the PLL's signal tracking phase, the integral loop gain block is enabled and its output is combined with output from the proportional loop gain path to provide higher order filtering of the desired signal. An offset that may be present due to the use of the proportional loop gain path can be measured and subtracted to help improve signal tracking settling times.
摘要:
A first periodic voltage waveform (20) is downconverted into a second periodic voltage waveform (35, 36). A plurality of temporally distinct samples (SA1, SA2, . . . ) respectively indicative of areas under corresponding fractional-cycles of the first voltage waveform are obtained. The samples are combined to produce the second voltage waveform. The samples can be manipulated to provide gain adjustment to the second voltage waveform. The samples are obtained by charging a sampling capacitance in response to a current waveform that corresponds to the first voltage waveform. The use of different sampling capacitances during respective predetermined time intervals permits the signal strength of the first waveform to be determined from observation of the second waveform.
摘要:
A novel apparatus for a low noise, high isolation, all digital transmit buffer gain control mechanism. The gain control scheme is presented in the context of an all digital direct digital-to-RF amplitude converter (DRAC), which efficiently combines the traditional transmit chain functions of upconversion, I and Q combining, D/A conversion, filtering, buffering and RF output amplitude control into a single circuit. The transmit buffer is constructed as an array of NMOS switches. The control logic for each NMOS switch comprises a pass-gate type AND gate whose inputs are the phase modulated output of an all digital PLL and the amplitude control word from a digital control block. Power control is accomplished by recognizing the impairments suffered by a pseudo class E pre-power amplifier (PPA) when implemented in a CMOS process. Firstly, the NMOS switches of the array have significant on resistance and thus can only draw a limited current from the an RF choke when the input waveform is high. The significant on resistance of the NMOS switches is exploited in the DRAC circuit to introduce power control of the transmitted waveform and permits a fully digital method of controlling the RF output power.
摘要:
A first periodic voltage waveform (20) is downconverted into a second periodic voltage waveform (35, 36). A plurality of temporally distinct samples (SA1, SA2, . . . ) respectively indicative of areas under corresponding fractional-cycles of the first voltage waveform are obtained. The samples are combined to produce the second voltage waveform, and are also manipulated to implement a filtering operation such that the second voltage waveform represents a downconverted, filtered version of the first voltage waveform. The second waveform is driven by an amplifier stage (25), and the second waveform can be advantageously constructed so as to permit the amplifier stage to perform internal resets, offset corrections and other ancillary amplifier stage adjustments without losing information in the first waveform.