Abstract:
A system for depositing a vapor phase organic compound onto a substrate, comprising a vacuum chamber comprising a wall, a wall heater in thermal communication with the wall of the vacuum chamber, at least one of an evaporative source and a transport polymerization source configured to introduce the vapor phase organic compound into the chamber, and a substrate holder disposed within the vacuum chamber, wherein the substrate holder comprises a cooled chuck, a heat transfer gas source for introducing a heat transfer gas to a space between the cooled chuck and the substrate, and a substrate clamping mechanism comprising at least one of an electrostatic, mechanical and magnetic clamping mechanism.
Abstract:
A substrate holder for holding and cooling a substrate during a film deposition process is disclosed, wherein the substrate holder comprises a cooled chuck, and a clamping member movably associated with the cooled chuck, wherein the clamping member is movable between an unclamped position in which a substrate is removable from the substrate holder and a clamped position in which a substrate is clamped to the substrate holder substantially adjacent the cooled chuck.
Abstract:
A reactor system for removing a leaving group from a gas-phase precursor to form a gas-phase radical species for transport polymerization is disclosed, wherein the reactor system comprises a reactor body, a plurality of reactor passages extending at least partially through the reactor body, and a heater body disposed in each reactor passage.
Abstract:
The present invention provides a system and a method for distending a body tissue cavity of a subject by continuous flow irrigation by using a dynamic pump, such as a centrifugal pump, on the inflow side and a positive displacement pump, such as a peristaltic pump, on the outflow side, such that the amplitude of the pressure pulsations created by a the said outflow positive displacement pump inside the said tissue cavity is substantially dampened to almost negligible levels. The present invention also provides a method for accurately determining the rate of fluid loss, into the subject's body system, during any endoscopic procedure without utilizing any deficit weight or fluid volume calculation, the same being accomplished by using two fluid flow rate sensors. The present invention also provides a system of creating and maintaining any desired pressure in a body tissue cavity for any desired cavity outflow rate. The system and the methods of the present invention described above can be used in any endoscopic procedure requiring continuous flow irrigation few examples of such endoscopic procedures being hysteroscopic surgery, arthroscopic surgery, trans uretheral surgery, endoscopic surgery of the brain and endoscopic surgery of the spine.
Abstract:
A system for depositing a composite polymer dielectric film on a substrate is disclosed, wherein the composite polymer dielectric film includes a low dielectric constant polymer layer disposed between a first silane-containing layer and a second silane-containing layer. The system includes a process module having a processing chamber and a monomer delivery system configured to admit a gas-phase monomer into the processing chamber for deposition of the low dielectric constant polymer layer, a post-treatment module for annealing the composite polymer dielectric film, and a silane delivery system configured to admit a vapor flow containing a silane precursor into at least one of the process module and the post-treatment module for the formation of the first silane-containing layer and the silane-containing layer.
Abstract:
A method of forming a protective barrier in an organic light emitting device is disclosed, wherein the organic light emitting device is formed on a substrate and includes a plurality of layers of materials, the plurality of layers of materials including an organic light emitting layer. The method includes forming an inorganic layer and a semi-crystalline parylene-based polymer layer over an underlying layer, wherein the semi-crystalline parylene-based polymer layer is formed via transport polymerization of a reactive intermediate species. Organic light emitting devices having barriers are also disclosed.
Abstract:
Preparation methods and stabilization processes for low k polymers that consist of sp2C—X and HC-sp3Cα—X bonds. A preparation method is achieved by controlling the substrate temperature and feed rate of the polymer precursors. One stabilization process includes a post annealing of as-deposited polymer films under the presence of hydrogen under high temperatures. The reductive annealing of these films is conducted at temperatures from −20° C. to −50° C. to +20° C. to +50° C. of their Reversible Crystal Transformation (“CRT”) temperatures, then quenching the resulting films to −20° C. to −50° C. below their “CRT” temperatures. The reductive annealing is conducted before the as-deposited film was removed from a deposition system and still under the vacuum. “Re-stabilization” processes of polymer surfaces that are exposed to reactive plasma etching are also disclosed; thus, further coating by barrier metal, cap layer or etch-stop layer can be safely applied.
Abstract:
A method of corrosion susceptibility testing of a magnetic recording head is disclosed. The method includes applying simulated disk corrosion products containing cobalt salts to the recording head. The recording head is then placed in an environmental chamber with elevated temperature and humidity. The resistance of the sensor on the recording head is measured after removal from the chamber and compared with the resistance before placement in the chamber. A significant change in resistance indicates a corrosion failure. This component level testing gives a more accurate indication of the corrosion performance of the recording head when placed in a disk drive.
Abstract:
A method and computer program product are provided for implementing datalink path protection. A datalink designation is created in the computer system and a datalink indicator is turned on. A corresponding datalink path for the datalink designation is stored in a predefined prefix table. The datalink indicator is used for processing a directory rename or remove operation.