Abstract:
Methods and products of Transport co-polymerization (“TCP”) that are useful for preparations of low Dielectric Constant (“ε”) thin films are disclosed. Transport co-polymerization (“TCP”) of reactive intermediates that are generated from a first precursor with a general structural formula (Z)m—Ar—(CX′X″Y)n (VI) with a second reactive intermediate that is generated from a cage compound (e.g. Fullerenes, Methylsilsesquioxane, Hydrosilsesquioxane, and Adamantanyl) or a cyclic-compounds (e.g. Cyclo-Siloxanes and 2,2-Paracyclophanes) results in co-polymer films that are useful for making porous low ε (≦2.0) thin films. The porous thin films of this invention consist of nano-pores with uniform pore distribution thus retain high rigidity thus are suitable for manufacturing of future ICs using copper as conductor. Preparation methods and stabilization processes for low k co-polymers that consist of sp2C—Z and HC-sp3Cα—X bonds are also revealed. A preparation method is achieved by controlling the substrate temperature and feed rate of the major precursors. One stabilization process includes a post annealing of as-deposited co-polymer films under the presence of hydrogen under high temperatures. The reductive annealing of these films is conducted at temperatures from −20° C. to −50° C. to +20° C. to +50° C. of their Reversible Crystal Transformation (“CRT”) temperatures, then quenching the resulting films to −20° C. to −50° C. below their “CRT” temperatures. The reductive annealing is conducted before the as-deposited film was removed from a deposition system and still under the vacuum. “Re-stabilization” processes of co-polymer surfaces that are exposed to reactive plasma etching are also disclosed; thus, further coating by barrier metal, cap layer or etch-stop layer can be safely applied.
Abstract:
A method of forming an organic light emitting device on a substrate is provided, wherein the method includes forming an active device structure on the substrate, adhering a mask to the substrate, wherein the mask covers an electrical contact portion of the substrate while exposing the active device structure, forming an encapsulant layer over the active device structure and the mask, forming a separation between a portion of the encapsulant layer that covers the active device structure and a portion of the encapsulant layer that covers the mask, and removing the mask from the substrate.
Abstract:
A system for depositing a composite polymer dielectric film on a substrate is disclosed, wherein the composite polymer dielectric film includes a low dielectric constant polymer layer disposed between a first silane-containing layer and a second silane-containing layer. The system includes a process module having a processing chamber and a monomer delivery system configured to admit a gas-phase monomer into the processing chamber for deposition of the low dielectric constant polymer layer, a post-treatment module for annealing the composite polymer dielectric film, and a silane delivery system configured to admit a vapor flow containing a silane precursor into at least one of the process module and the post-treatment module for the formation of the first silane-containing layer and the silane-containing layer.
Abstract:
A method of encapsulating an organic light-emitting device is disclosed, wherein the device includes a light-emitting portion and an electrical contact portion, the method including forming a polymer layer over the light-emitting portion and the electrical contact portion of the device; forming a separation in the polymer layer between a portion of the polymer layer disposed over the light-emitting portion of the device and a portion of the polymer layer disposed over the electrical contact portion of the device; adhering a film removal structure to the portion of the polymer layer disposed over the electrical contact portion of the device; and removing the film removal structure, thereby causing the removal of the portion of the polymer layer disposed over the electrical contact portion of the device.
Abstract:
In an organic light emitting device package including a plurality of layers of materials formed on a substrate the plurality of layers of materials including an organic light emitting layer a protective barrier for protecting the organic light emitting device from environmental degradation the protective barrier comprising a first semi-crystalline parylene-based layer an inorganic barrier layer and a second semi-crystalline parylene-based layer.
Abstract:
A method of forming an electrically conductive element in an integrated circuit is disclosed. The method includes depositing a composite polymer dielectric film onto a silicon-containing substrate, wherein the composite polymer dielectric film includes a silane-containing adhesion promoter layer formed on the silicon-containing substrate, and a low dielectric constant polymer layer formed on the adhesion promoter layer, depositing a silane-containing hard mask layer onto the composite polymer dielectric film, exposing the adhesion promoter layer and the hard mask layer to a free radical-generating energy source to chemically bond the adhesion promoter layer to the underlying silicon-containing substrate and to the low dielectric constant polymer layer, and to chemically bond the composite polymer dielectric film to the hard mask layer, etching an etched feature in the hard mask layer and the composite polymer dielectric film, and depositing an electrically conductive material in the etched feature.
Abstract:
A method of forming a protective barrier in an organic light emitting device is disclosed, wherein the organic light emitting device is formed on a substrate and includes a plurality of layers of materials, the plurality of layers of materials including an organic light emitting layer. The method includes forming an inorganic layer and a semi-crystalline parylene-based polymer layer over an underlying layer, wherein the semi-crystalline parylene-based polymer layer is formed via transport polymerization of a reactive intermediate species. Organic light emitting devices having barriers are also disclosed.
Abstract:
Preparation methods and stabilization processes for low k polymers that consist of sp2C—X and HC-sp3Cα—X bonds. A preparation method is achieved by controlling the substrate temperature and feed rate of the polymer precursors. One stabilization process includes a post annealing of as-deposited polymer films under the presence of hydrogen under high temperatures. The reductive annealing of these films is conducted at temperatures from −20° C. to −50° C. to +20° C. to +50° C. of their Reversible Crystal Transformation (“CRT”) temperatures, then quenching the resulting films to −20° C. to −50° C. below their “CRT” temperatures. The reductive annealing is conducted before the as-deposited film was removed from a deposition system and still under the vacuum. “Re-stabilization” processes of polymer surfaces that are exposed to reactive plasma etching are also disclosed; thus, further coating by barrier metal, cap layer or etch-stop layer can be safely applied.
Abstract:
A method of forming a hybrid inorganic/organic dielectric layer on a substrate for use in an integrated circuit is provided, wherein the method includes forming a first dielectric layer on the substrate via chemical vapor deposition, and forming a second dielectric layer on the first dielectric layer via chemical vapor deposition, wherein one of the first dielectric layer and the second dielectric layer is formed from an organic dielectric material, and wherein the other of the first dielectric layer and the second dielectric layer is formed from an inorganic dielectric material.
Abstract:
A method of stabilizing a poly(paraxylylene) dielectric thin film after forming the dielectric thin film via transport polymerization is disclosed, wherein the method includes annealing the dielectric thin film under at least one of a reductive atmosphere and a vacuum at a temperature above a reversible solid phase transition temperature of the dielectric film to convert the film from a lower temperature phase to a higher temperature phase, and cooling the dielectric thin film at a sufficient rate to a temperature below the solid phase transition temperature of the dielectric thin film to trap substantial portions of the film in the higher temperature phase.