Abstract:
A method of forming a hybrid inorganic/organic dielectric layer on a substrate for use in an integrated circuit is provided, wherein the method includes forming a first dielectric layer on the substrate via chemical vapor deposition, and forming a second dielectric layer on the first dielectric layer via chemical vapor deposition, wherein one of the first dielectric layer and the second dielectric layer is formed from an organic dielectric material, and wherein the other of the first dielectric layer and the second dielectric layer is formed from an inorganic dielectric material.
Abstract:
A method of forming an organic light-emitting display on a substrate is disclosed, wherein the method includes forming a thin film transistor portion of the device on the substrate, wherein the thin film transistor portion includes control circuitry having an array of thin film transistors; and forming a light-emitting portion of the device over the thin film transistor portion, wherein the light-emitting portion includes an organic light-emitting layer, an electrode layer in electrical communication with the organic light-emitting layer, a polymer barrier layer disposed between the organic light-emitting layer and the electrode, and at least one other passive polymer layer, wherein the barrier layer and at least one other passive polymer layer are formed from a same polymer material.
Abstract:
A system for depositing a composite polymer dielectric film on a substrate is disclosed, wherein the composite polymer dielectric film includes a low dielectric constant polymer layer disposed between a first silane-containing layer and a second silane-containing layer. The system includes a process module having a processing chamber and a monomer delivery system configured to admit a gas-phase monomer into the processing chamber for deposition of the low dielectric constant polymer layer, a post-treatment module for annealing the composite polymer dielectric film, and a silane delivery system configured to admit a vapor flow containing a silane precursor into at least one of the process module and the post-treatment module for the formation of the first silane-containing layer and the silane-containing layer.
Abstract:
A method of forming a hybrid inorganic/organic dielectric layer on a substrate for use in an integrated circuit is provided, wherein the method includes forming a first dielectric layer on the substrate via chemical vapor deposition, and forming a second dielectric layer on the first dielectric layer via chemical vapor deposition, wherein one of the first dielectric layer and the second dielectric layer is formed from an organic dielectric material, and wherein the other of the first dielectric layer and the second dielectric layer is formed from an inorganic dielectric material.
Abstract:
An organic light-emitting display is disclosed, wherein the organic light-emitting display includes a thin film transistor portion including an array of thin film transistors, and a light-emitting portion including an array of organic light-emitting elements in electrical communication with the array of thin film transistors, wherein the light-emitting portion is formed from a plurality of layers of materials, and wherein the plurality of layers of materials in the light-emitting portion includes a plurality of passive polymer layers each formed from a single polymer material. Systems and methods for forming organic light-emitting displays are also disclosed.
Abstract:
A system for depositing a composite polymer dielectric film on a substrate is disclosed, wherein the composite polymer dielectric film includes a low dielectric constant polymer layer disposed between a first silane-containing layer and a second silane-containing layer. The system includes a process module having a processing chamber and a monomer delivery system configured to admit a gas-phase monomer into the processing chamber for deposition of the low dielectric constant polymer layer, a post-treatment module for annealing the composite polymer dielectric film, and a silane delivery system configured to admit a vapor flow containing a silane precursor into at least one of the process module and the post-treatment module for the formation of the first silane-containing layer and the silane-containing layer.