摘要:
A vapor drying apparatus comprises a processing chamber 1a adapted to contain semiconductor wafers W; a supply nozzle 2 adapted to supply IPA vapor or N2 gas into the processing chamber 1a; a two-fluid nozzle 3 connected to both of an IPA supply source 8 and an N2 gas supply source 5 and adapted to produce a mixed fluid of IPA and N2 gas; a vapor generating apparatus 10 adapted to produce IPA vapor by heating the mixed fluid produced by the two-fluid nozzle 3; an N2 gas supply line 23 connected to the upstream side of the two-fluid nozzle 3; and a mixed fluid supply line 22 connected to the downstream side of the two-fluid nozzle 3. An open-and-close valve V2 is provided on a branch line 25 connecting the N2 gas supply line 23 and the mixed fluid supply line 22. First, N2 gas is supplied to the two-fluid nozzle 3 while IPA from the IPA supply source 8 is supplied to the two-fluid nozzle 3 so as to produce the mixed fluid, followed by supplying it to the processing chamber 1a so as to perform a first drying step. Subsequently, N2 gas from the N2 gas supply source 5 is supplied to the processing chamber 1a through the two-fluid nozzle 3 and the branch line 25 so as to perform a second drying step.
摘要:
A substrate processing apparatus capable of reducing a consumed amount of a processing liquid is provided. The substrate processing apparatus includes a plurality of processing units 22-1 to 22-6 to perform liquid processing on a substrate by using a processing liquid, a processing liquid supply pipe 210 to supply the processing liquid in common to the plurality of processing units 22-1 to 22-6, and a flow control part 220 to control a flow rate of the processing liquid within the processing liquid supply pipe 210 to be increased or decreased according to a number of operating processing units from among the plurality of processing units 22-1 to 22-6.
摘要:
A liquid processing apparatus 1 comprises a casing 5, a substrate holding mechanism 20 that holds a wafer (substrate to be processed) W, a process-liquid supplying mechanism 30 that supplies a process liquid, a draining cup 12 that receives a process liquid, and a draining pipe 13 that discharges a process liquid outside. The process-liquid supplying mechanism 30 includes a first chemical-liquid supply mechanism that supplies a hydrofluoric process liquid, and a drying-liquid supplying mechanism that supplies an organic solvent for drying a wafer W. A control part 50 causes the first chemical-liquid supplying mechanism to supply a hydrofluoric process liquid, and then causes the drying-liquid supplying mechanism to supply an organic solvent. In addition, before the control part 50 causes the drying-liquid supplying mechanism to supply an organic solvent, the control part causes a cleaning mechanism 10 to remove an alkaline component in a casing 5.
摘要:
A batch forming apparatus forms a batch of substrates by combining a plurality of substrates that have been taken out from a plurality of carriers each containing therein the substrates in a stacked manner. The batch forming apparatus includes: a substrate transfer mechanism that takes out the substrates from each carrier and transfer the substrates; a substrate relative positional relationship changing mechanism that rearranges one or more substrates out of the substrates transferred by the substrate transfer mechanism one by one relative to other substrates to change positional relationships of the substrates relative to each other; and a batch forming mechanism that forms a batch of substrates out of the substrates that have been transferred thereto by the substrate transfer mechanism, with positional relationships of the substrates having been changed relative to each other by the substrate relative positional relationship changing mechanism. A substrate processing system includes such a batch forming apparatus, and a substrate processing apparatus that process the batch of substrates formed by the batch forming apparatus.
摘要:
A substrate processing system includes a substrate transfer unit having a plural-wafer conveyer that transfers plural wafers collectively and a single wafer conveyer that transfers a single wafer at a time. The single-wafer conveyer is accessible to the plural-wafer conveyer to deliver and remove a wafer to and from the plural-wafer conveyer.
摘要:
A cleaning apparatus 1 includes a foup loading/unloading part 2 for mounting foups F each accommodating a plurality of wafers W at intervals of a constant pitch (normal pitch), a rotor 34 capable of holding the wafers W at half the normal pitch (half pitch), a wafer transporting device 11 for transporting the wafer E between the foup F and the rotor 34, wafer posture changing devices 20a, 20b, a wafer elevating mechanism 40, a motor 31 for rotating the rotor 34, an outer chamber 71a and an inner chamber 71b both accommodating the rotor 34, and cleaning liquid nozzles 53, 55 for supplying a cleaning liquid to the wafers W. The rotor 34 holds the wafers W at intervals of an optional pitch (every one holding pitch or every plural holding pitches) to carry out a cleaning operation. Consequently, it is possible to process substrates accommodated in two containers at one batch processing.
摘要:
A substrate cleaning method can uniformly removing particles from substrates at a high removing efficiency. The substrate cleaning method includes the steps of immersing substrates W in a cleaning liquid in a cleaning tank 12, and generating ultrasonic waves in the cleaning liquid contained in the cleaning tank. A region in the cleaning tank toward which the cleaning liquid is supplied is varied with respect to a vertical level in the step of generating ultrasonic waves in the cleaning liquid while the cleaning liquid is being supplied into the cleaning tank.
摘要:
A liquid processing apparatus has a substrate rotating device including a holder for holding a substrate and a motor, a chamber for applying the liquid processing to the substrate, a posture changing mechanism for changing the posture of the substrate rotating device at outside of the chamber such that a state of the substrate held by the holder changes between vertical and horizontal, and a position adjusting mechanism for relatively adjusting the positions of the chamber and the substrate rotating device together with the posture changing mechanism such that the holder is housed in the chamber. The substrate is taken out from the container and held by the holder in a horizontal state. After the posture of the holder was changed to vertical, a process liquid is supplied to the substrate of vertical state.
摘要:
A rotary substrate processing apparatus includes a rotor 1 having a holding member for holding a plurality of semiconductor wafers W arranged at appropriate intervals and a motor 4 for rotating the rotor 1. The holding member includes open/close holding rods 3 that are moved to open or close the rotor 1 in inserting the wafers W into the rotor 1 sideways and a plurality of constant-position holding rods 2a to 2d for holding the wafers W in cooperation with the open/close holding rods 3. Among the constant-position holding rods 2a to 2d, at least one constant-position holding rod 2a is equipped with a plurality of press members 5 which move toward respective peripheral portions of the wafers W by centrifugal force due to the rotation of the rotor 1. Consequently, it becomes possible to make the wafers W follow the rotation of the rotor 1 ensurely and also possible to reduce slip between the open/close holding rods 3, the constant-position holding rods 2a to 2d and the wafers W. Therefore, it is possible to accomplish both improvement in processing efficiency for the substrates and reduction in abrasion amount of the holding member and also possible to increase a life span of the apparatus.
摘要:
A processing apparatus includes an inner cylinder 25 (a processing chamber 23) accommodated in a carrying unit for carrying an object to be processed and further seals up the object with the inner cylinder 25 or a first stationary wall 34 to process the object in contact with processing fluid. In this processing apparatus with sealing mechanism, flexible hollow packings 100, 101 are arranged doubly in either the inner cylinder 25 or the first stationary wall 34, at its occluded part with the first stationary wall 34 and the inner cylinder 25. The hollow packings 100, 101 have their hollow parts 102 connected with respective pressurized-air sources 103 through pressure-detecting switches 110 and closing valves 105. By expanding or contracting the hollow packings 100, 101, the operation of the apparatus is switched in between its sealing state and non-sealing state. With this arrangement, it is possible to improve the sealing capability and prolong the life of the mechanism.