SYSTEM AND METHOD FOR PHYSIOLOGICAL MONITORING

    公开(公告)号:US20180153419A1

    公开(公告)日:2018-06-07

    申请号:US15828540

    申请日:2017-12-01

    Abstract: This disclosure relates generally to physiological monitoring, and more particularly to feature set optimization for classification of physiological signal. In one embodiment, a method for physiological monitoring includes identifying clean physiological signal training set from an input physiological signal based on a Dynamic Time Warping (DTW) of segments associated with the physiological signal. An optimal features set is extracted from a clean physiological signal training set based on a Maximum Consistency and Maximum Dominance (MCMD) property associated with the optimal feature set that strictly optimizes on the objective function, the conditional likelihood maximization over different selection criteria such that diverse properties of different selection parameters are captured and achieves Pareto-optimality. The input physiological signal is classified into normal signal components and abnormal signal components using the optimal features set.

    SYSTEM AND METHOD FOR DETERMINING INFORMATION AND OUTLIERS FROM SENSOR DATA
    76.
    发明申请
    SYSTEM AND METHOD FOR DETERMINING INFORMATION AND OUTLIERS FROM SENSOR DATA 审中-公开
    用于从传感器数据确定信息和输出的系统和方法

    公开(公告)号:US20170055913A1

    公开(公告)日:2017-03-02

    申请号:US15208230

    申请日:2016-07-12

    Abstract: The present subject matter discloses a system and a method for identifying information from sensor data in a sensor agnostic manner. The system may receive sensor data provided by a sensor and may determine statistical features of the sensor data. The system may determine signal dynamics of the sensor data based on at least one of the statistical features, signal processing features, and a data distribution model. The system may select at least one outlier class based on the signal dynamics, number of streams of the sensor data, and dimensions of the sensor data. The system may select at least one outlier detection method associated with an outlier class for detecting outliers in the sensor data. The system may determine information content of the sensor data based on the outliers, the signal dynamics, the statistical features, and information theoretic features, and similarity or dissimilarity measure.

    Abstract translation: 本主题公开了一种用于以传感器不可知方式从传感器数据识别信息的系统和方法。 系统可以接收由传感器提供的传感器数据,并且可以确定传感器数据的统计特征。 该系统可以基于统计特征,信号处理特征和数据分布模型中的至少一个确定传感器数据的信号动态。 系统可以基于信号动态,传感器数据的流数和传感器数据的尺寸来选择至少一个离群类。 该系统可以选择与异常值相关联的至少一个异常值检测方法,用于检测传感器数据中的异常值。 该系统可以基于异常值,信号动力学,统计特征和信息理论特征以及相似性或不相似性度量来确定传感器数据的信息内容。

    SYSTEM AND METHOD FOR DISTRIBUTED COMPUTATION USING HETEROGENEOUS COMPUTING NODES
    77.
    发明申请
    SYSTEM AND METHOD FOR DISTRIBUTED COMPUTATION USING HETEROGENEOUS COMPUTING NODES 审中-公开
    使用异构计算节点进行分布式计算的系统和方法

    公开(公告)号:US20160140359A1

    公开(公告)日:2016-05-19

    申请号:US14900061

    申请日:2014-06-09

    Abstract: This disclosure relates generally to the use of distributed system for computation, and more particularly, relates to a method and system for optimizing computation and communication resource while preserving security in the distributed device for computation. In one embodiment, a system and method of utilizing plurality of constrained edge devices for distributed computation is disclosed. The system enables integration of the edge devices like residential gateways and smart phone into a grid of distributed computation. The edged devices with constrained bandwidth, energy, computation capabilities and combination thereof are optimized dynamically based on condition of communication network. The system further enables scheduling and segregation of data, to be analyzed, between the edge devices. The system may further be configured to preserve privacy associated with the data while sharing the data between the plurality of devices during computation.

    Abstract translation: 本公开一般涉及分布式系统用于计算的用途,更具体地,涉及一种用于优化计算和通信资源同时保持分布式设备中的安全性进行计算的方法和系统。 在一个实施例中,公开了一种利用多个约束边缘装置进行分布式计算的系统和方法。 该系统使边缘设备(如住宅网关和智能手机)集成到分布式计算网格中。 基于通信网络的条件,具有约束带宽,能量,计算能力及其组合的边缘设备被动态优化。 该系统进一步实现边缘设备间的数据分析和分析。 该系统还可以被配置为在计算期间在多个设备之间共享数据的同时保留与数据相关联的隐私。

    DETERMINING COGNITIVE LOAD OF A SUBJECT FROM ELECTROENCEPHALOGRAPHY (EEG) SIGNALS
    78.
    发明申请
    DETERMINING COGNITIVE LOAD OF A SUBJECT FROM ELECTROENCEPHALOGRAPHY (EEG) SIGNALS 审中-公开
    确定电子病历(EEG)信号的主体的认知负荷

    公开(公告)号:US20160113539A1

    公开(公告)日:2016-04-28

    申请号:US14627334

    申请日:2015-02-20

    Abstract: Disclosed is a method and system for determining a cognitive load of a subject from Electroencephalography (EEG) signals. EEG signals are received from EEG channels associated with a left-frontal brain lobe. EEG signals are associated with a subject performing cognitive task. EEG signals are received from a low resolution EEG device. EEG channels comprise four EEG channels associated with the left-frontal brain lobe. EEG signals are preprocessed using a Hilbert-Huang Transform (HHT) filter to remove a noise corresponding to one or more non-cerebral artifacts to generate preprocessed EEG signals. Features comprising Fast Fourier Transform (FFT) based alpha and theta band power are extracted from the preprocessed EEG signals. Feature vector is generated from the features. The feature vector is classified using a Support Vector Machine (SVM) classifier to determine the cognitive load of the subject.

    Abstract translation: 公开了一种用于从脑电图(EEG)信号确定受试者的认知负荷的方法和系统。 从与左额脑脑相关的EEG通道接收EEG信号。 EEG信号与执行认知任务的对象相关联。 EEG信号从低分辨率EEG设备接收。 脑电信道包括与左额脑脑相关的四个脑电信道。 使用希尔伯特 - 黄变换(HHT)滤波器对EEG信号进行预处理,以去除与一个或多个非脑神经元相对应的噪声,以产生预处理的脑电信号。 从预处理的EEG信号中提取包括基于快速傅里叶变换(FFT)的α和θ带功率的特征。 特征向量是从特征生成的。 使用支持向量机(SVM)分类器对特征向量进行分类,以确定受试者的认知负荷。

Patent Agency Ranking