Abstract:
A system is provided for automated monitoring the health of a patient. The system is unifying the approach of multi-sensing, robotic platform and cloud computing to monitor the health of the patient with zero or very minimal human intervention. The plurality of physiological parameters and the pathological values is sensed using the plurality of physiological sensors and the plurality of pathological sensors or using a smart phone of the patient. The body of the patient is scanned using a robotic arm. The data sensed by the sensor is then identifies a set of anomalies and send the set of anomalies to cloud server. A cognitive engine present on the cloud server is then diagnoses a disease using cloud computing and send the report to caregiver and doctor. According to another embodiment, a method is also provided for automated monitoring the health of the person using the above mentioned system.
Abstract:
This disclosure relates generally to physiological monitoring, and more particularly to feature set optimization for classification of physiological signal. In one embodiment, a method for physiological monitoring includes identifying clean physiological signal training set from an input physiological signal based on a Dynamic Time Warping (DTW) of segments associated with the physiological signal. An optimal features set is extracted from a clean physiological signal training set based on a Maximum Consistency and Maximum Dominance (MCMD) property associated with the optimal feature set that strictly optimizes on the objective function, the conditional likelihood maximization over different selection criteria such that diverse properties of different selection parameters are captured and achieves Pareto-optimality. The input physiological signal is classified into normal signal components and abnormal signal components using the optimal features set.
Abstract:
An acoustic array system for anomaly detection is provided. The acoustic array system (100) performs a scan (or a progressive scan of frequencies) of a given volume by transmitting one or more signals, and receives one or more reflected signals from objects within the volume. The reflected signals are then amplified and converted to a set of digital signals. Features of the set of digital signals are extracted both in time and frequency domains. The acoustic array system (100) further performs a comparison of these set of digital extracted features with the reflected signals via machine learning techniques. Based on the comparison, the acoustic array system detects one or more anomalies.
Abstract:
This disclosure relates generally to biomedical signal processing, and more particularly to method and system for physiological parameter derivation from pulsating signals with reduced error. In this method, pulsating signals are extracted, spurious perturbations in the extracted pulsating signals are removed for smoothening, local minima points in the smoothened pulsating signal are derived, systolic maxima point between two derived local minima are derived, most probable pulse duration and most probable peak-to-peak distance are derived, dicrotic minima is removed while ensuring that every dicrotic minima is preceded by a systolic maxima point and followed by a beat start point of said systolic maxima, diastolic peak is derived while ensuring that every dicrotic maxima is preceded by a diastolic notch followed by next beat start point of that maxima, and physiological parameters are derived from the derived local minima points, systolic maxima points, dicrotic notch and diastolic peak.
Abstract:
A method and system for removing corruption in photoplethysmogram (PPG) signals for monitoring cardiac health of patients is provided. The method is performed by extracting photoplethysmogram signals from the patient, detecting and eliminating corruption caused by larger and transient disturbances in the extracted photoplethysmogram signals, segmenting photoplethysmogram signals post detection and elimination of corruption caused by larger and transient disturbances, identifying of inconsistent segments from the segmented photoplethysmogram signals, detecting anomalies from the identified inconsistent segments of the photoplethysmogram signals, analysing the detected anomalies of the photoplethysmogram signals and identifying photoplethysmogram signal segments corrupted by smaller and prolonged disturbances.
Abstract:
The present subject matter discloses a system and a method for identifying information from sensor data in a sensor agnostic manner. The system may receive sensor data provided by a sensor and may determine statistical features of the sensor data. The system may determine signal dynamics of the sensor data based on at least one of the statistical features, signal processing features, and a data distribution model. The system may select at least one outlier class based on the signal dynamics, number of streams of the sensor data, and dimensions of the sensor data. The system may select at least one outlier detection method associated with an outlier class for detecting outliers in the sensor data. The system may determine information content of the sensor data based on the outliers, the signal dynamics, the statistical features, and information theoretic features, and similarity or dissimilarity measure.
Abstract:
This disclosure relates generally to the use of distributed system for computation, and more particularly, relates to a method and system for optimizing computation and communication resource while preserving security in the distributed device for computation. In one embodiment, a system and method of utilizing plurality of constrained edge devices for distributed computation is disclosed. The system enables integration of the edge devices like residential gateways and smart phone into a grid of distributed computation. The edged devices with constrained bandwidth, energy, computation capabilities and combination thereof are optimized dynamically based on condition of communication network. The system further enables scheduling and segregation of data, to be analyzed, between the edge devices. The system may further be configured to preserve privacy associated with the data while sharing the data between the plurality of devices during computation.
Abstract:
Disclosed is a method and system for determining a cognitive load of a subject from Electroencephalography (EEG) signals. EEG signals are received from EEG channels associated with a left-frontal brain lobe. EEG signals are associated with a subject performing cognitive task. EEG signals are received from a low resolution EEG device. EEG channels comprise four EEG channels associated with the left-frontal brain lobe. EEG signals are preprocessed using a Hilbert-Huang Transform (HHT) filter to remove a noise corresponding to one or more non-cerebral artifacts to generate preprocessed EEG signals. Features comprising Fast Fourier Transform (FFT) based alpha and theta band power are extracted from the preprocessed EEG signals. Feature vector is generated from the features. The feature vector is classified using a Support Vector Machine (SVM) classifier to determine the cognitive load of the subject.