Abstract:
A method of reducing entanglement of wires includes receiving from a wire feed system of a wire processing machine a first wire on a tray surface providing a wire-to-surface coefficient of friction between the tray surface and the first wire. In addition, the method includes receiving from the wire feed system a second wire at least partially on top of the first wire, the wire-to-surface coefficient of friction being higher than a wire-to-wire coefficient of friction between the first wire and the second wire. The method also includes moving the second wire relative to the first wire, and reducing movement of at least a portion of the first wire relative to the tray surface during movement of the second wire relative to the first wire due to the wire-to-surface coefficient of friction being higher than the wire-to-wire coefficient of friction.
Abstract:
A method for aligning a removable sensor on a vehicle includes connecting the removable sensor to a sensor mounting device. The method further includes connecting a connector of an alignment apparatus to either (i) the removable sensor such that a spatial reference component of the alignment apparatus has a known position and orientation relative to a current position and orientation of the removable sensor or (ii) a fixed connection location on the vehicle such that the spatial reference component indicates a desired position and orientation of the removable sensor. In addition the method includes adjusting the current position and orientation of the removable sensor by reference to the alignment apparatus to cause the current position and orientation of the removable sensor to match the desired position and orientation of the removable sensor.
Abstract:
A cable processing apparatus including a frame; a cable guide coupled to the frame; a first cable clamp adjacent the cable guide; a second cable clamp adjacent the cable guide where the first cable clamp is disposed between the cable guide and the second cable clamp; and a controller configured to move the second cable clamp to a clamped position such that a cable extending through the cable guide is clamped by the second cable clamp, move the second cable clamp, relative to the cable guide, in a direction extending along the cable such that a first portion of the insulation is removed from the cable at the first score to expose shielding of the cable, and move the second cable clamp, relative to the first cable clamp, in the direction extending along the cable to cut the shielding to expose one or more conductor of the cable.
Abstract:
An adhesive-bonded attachment device includes a mounting base including a mounting surface, a structural adhesive disposed on the mounting surface, and a pressure-sensitive adhesive disposed on the mounting surface bordering the structural adhesive, wherein the structural adhesive and the pressure-sensitive adhesive define a bonding surface configured to be bonded to a contact surface of a structure, and an attachment feature disposed on said mounting base.
Abstract:
A system for additively manufacturing a composite part is disclosed. The system comprises a delivery guide, movable relative to a surface. The delivery guide is configured to deposit at least a segment of a continuous flexible line along a print path. The print path is stationary relative to the surface. The continuous flexible line comprises a non-resin component and a thermosetting-epoxy-resin component that is partially cured. The system also comprises a feed mechanism, configured to push the continuous flexible line through the delivery guide. The system further comprises a cooling system, configured to maintain the thermosetting-epoxy-resin component of the continuous flexible line below a threshold temperature prior to depositing the segment of the continuous flexible along the print path via the delivery guide.
Abstract:
A system comprises a delivery guide movable relative to a surface. The delivery guide is configured to deposit a continuous flexible line along a print path that is stationary relative to the surface. The system further comprises a vessel, configured to hold a volume of a liquid photopolymer resin and to apply a quantity of the liquid photopolymer resin to the non-resin component to create the continuous flexible line. The system further comprises a feed mechanism, configured to pull the non-resin component through the vessel and to push the continuous flexible line out of the delivery guide. The system further comprises a source of curing energy. The source is configured to deliver the curing energy at least to a portion of the segment of the continuous flexible line after the segment of the continuous flexible line exits the delivery guide.
Abstract:
A method of additively manufacturing composite part comprises depositing a segment of a continuous flexible line along a print path. The continuous flexible line comprises a non-resin component and further comprises a photopolymer-resin component that is uncured. The method further comprises delivering a predetermined or actively determined amount of curing energy at least to a portion of the segment of the continuous flexible line at a controlled rate while advancing the continuous flexible line toward the print path and after the segment of the continuous flexible line is deposited along the print path to at least partially cure at least the portion of the segment of the continuous flexible line.
Abstract:
A method of additively manufacturing a composite part comprises pushing a continuous flexible line through a delivery guide. The continuous flexible line comprises a non-resin component and a photopolymer-resin component that is partially cured. The method also comprises depositing, via the delivery guide, a segment of the continuous flexible line along a print path. Additionally, the method comprises delivering curing energy at least to a portion of the segment of the continuous flexible line deposited along the print path.
Abstract:
A wire processing system includes a tray having at least one tray surface configured to sequentially receive a first wire and a second wire from a wire feed system of a wire processing machine. The tray surface has a surface feature configured to provide a wire-to-surface coefficient of friction between the tray surface and the first wire higher than a wire-to-wire coefficient of friction between the first wire and the second wire laying on top of the first wire. The wire-to-surface coefficient of friction reduces movement of at least a portion of the first wire relative to the tray surface during movement of the second wire relative to the first wire.
Abstract:
A system (100) for additively manufacturing a composite part (102) comprises a delivery assembly (266), a feed mechanism (104), and a source (116) of curing energy (118). The delivery assembly (266) comprises a delivery guide (112) movable relative to a surface (114) and is configured to deposit a continuous flexible line (106) along a print path (122). The delivery assembly (266) further comprises a first inlet (170), configured to receive a non-resin component (108), and a second inlet (250), configured to receive a photopolymer resin (252). The delivery assembly (266) applies the photopolymer resin (252) to the non-resin component (108). The feed mechanism (104) pushes the continuous flexible line (106) out of the delivery guide (112). The source (116) of the curing energy (118) delivers the curing energy (118) to a portion (124) of the continuous flexible line (106) after it exits the delivery guide (112).