摘要:
In a plasma generating apparatus, a coil is positioned between a target and a workpiece to inductively couple RF energy into a plasma so that the paths of a portion of the ionized deposition material are deflected from the center of the workpiece and toward the edges of the workpiece. As a consequence, it has been found that the uniformity of deposition may be improved. In the illustrated embodiment, the coil is a multi-turn coil formed in a generally planar spiral centered in the stream of deposition material.
摘要:
Methods are presented for fabricating an MTJ element having a uniform vertical distance between its free layer and a bit line and, in addition, having a protective spacer layer formed abutting the lateral sides of the MTJ element to eliminate leakage currents between MTJ layers and the bit line. Each method forms a dielectric spacer layer on the lateral sides of the MTJ element and, depending on the method, includes an additional layer that protects the spacer layer during etching processes used to form a Cu damascene bit line. At various stages in the process, a dielectric layer is also formed to act as a CMP stop layer so that the capping layer on the MTJ element is not thinned by the CMP process that planarizes the surrounding insulation. Subsequent to planarization, the stop layer is removed by an anisotropic etch of such precision that the MTJ element capping layer is not reduced in thickness and serves to maintain uniform vertical distance between the bit line and the MTJ free layer.
摘要:
A method for manufacturing a magnetoresistive sensor at very small dimensions with well a controlled track width and clean damage free side wall junctions. The method uses nano-imprinting rather than photolithography to pattern a resist layer. This eliminates the track width variations inherent in photolithographic patterning. The use of nano-imprinting also eliminates the need for a bottom anti-reflective coating beneath the resist layer, thereby also eliminating the need for an additional etch process to remove the bottom anti-reflective coating, which would also cause variations in track width.
摘要:
A method for manufacturing a magnetoresistive read sensor that allows the sensor to be constructed with clean well defined side junctions, even at very narrow track widths. The method involves using first and second etch mask layers, that are constructed of materials such that the second mask (formed over the first mask) can act as a mask during the patterning of the first mask (bottom mask). The first mask has a well defined thickness that is defined by deposition and which is not affected by the etching processes used to define the mask. This allows the total ion milling etch mask thickness to be well controlled before the ion milling process used to define the sensor side walls.
摘要:
An MTJ in an MRAM array or in a TMR read head is comprised of a capping layer with a lower inter-diffusion barrier layer, an intermediate oxygen gettering layer, and an upper metal layer that contacts a top conductor. The composite capping layer is especially useful with a moderate spin polarization free layer such as a NiFe layer with a Fe content of about 17.5 to 20 atomic %. The capping layer preferably has a Ru/Ta/Ru configuration in which the lower Ru layer is about 10 to 30 Angstroms thick and the Ta layer is about 30 Angstroms thick. As a result, a high dR/R of about 40% is achieved with low magnetostriction less than about 1.0 E−6 in an MTJ in an MRAM array. Best results are obtained with an AlOx tunnel barrier layer formed by an in-situ ROX process on an 8 to 10 Angstrom thick Al layer.
摘要:
A method for forming MRAM cell structures wherein the topography of the cell is substantially flat and the distance between a bit line and a magnetic free layer, a word line and a magnetic free layer or a word line and a bit line and a magnetic free layer is precise and well controlled. The method includes the formation of an MTJ film stack over which is formed both a capping and sacrificial layer. The stack is patterned by conventional means, then is covered by a layer of insulation which is thinned by CMP to expose a remaining portion of the sacrificial layer. The remaining portion of the sacrificial layer can be precisely removed by an etching process, leaving only the well dimensioned capping layer to separate the bit line from the magnetic free layer and the capping layer. The bit line and an intervening layer of insulation separate the free layer from a word line in an equally precise and controlled manner.
摘要:
A method to fabricate an MTJ device and its connections to a CMOS integrated circuit is described. The device is built out of three layers. The bottom layer serves as a seed layer for the center layer, which is alpha tantalum, while the third, topmost, layer is selected for its smoothness, its compatibility with the inter-layer dielectric materials, and its ability to protect the underlying tantalum.
摘要:
A structure that is well suited to connecting an MTJ device to a CMOS integrated circuit is described. It is built out of three layers. The bottom layer serves as a seed layer for the center layer, which is alpha tantalum, while the third, topmost, layer is selected for its smoothness, its compatibility with the inter-layer dielectric materials, and its ability to protect the underlying tantalum. A method for its formation is also described.
摘要:
A method of forming a high performance MTJ in an MRAM array is disclosed. A Ta/Ru capping layer in a bottom conductor is sputter etched to remove the Ru layer and form an amorphous Ta capping layer. A key feature is a subsequent surface treatment of the Ta capping layer in a transient vacuum chamber where a self-annealing occurs and a surfactant layer is formed on the Ta surface. The resulting smooth and flat Ta surface promotes a smooth and flat surface in the MTJ layers which are subsequently formed on the surfactant layer. For a 0.3×0.6 micron MTJ bit size, a 35 to 40 Angstrom thick NiFe(18%) free layer, an AlOx barrier layer generated from a ROX oxidation of an 9 to 10 Angstrom thick Al layer, and a Ru/Ta/Ru capping layer are employed to give a dR/R of >40% and an RA of about 4000 ohm-μm2.
摘要:
An MTJ (magnetic tunneling junction) MRAM (magnetic random access memory) cell is formed on a conducting lead and magnetic keeper layer that is capped by a sputter-etched Ta layer. The Ta capping layer has a smooth surface as a result of the sputter-etching and that smooth surface promotes the subsequent formation of a lower electrode (pinning/pinned layer) with smooth, flat layers and a radical oxidized (ROX) Al tunneling barrier layer which is ultra-thin, smooth, and to has a high breakdown voltage. A seed layer of NiCr is formed on the sputter-etched capping layer of Ta. The resulting device has generally improved performance characteristics in terms of its switching characteristics, GMR ratio and junction resistance.