摘要:
The present invention relates to a method for manufacturing metal nanoparticles, more particularly, to a method for manufacturing metal nanoparticles, the method comprising: forming a mixture by dissociating a metal precursor in fatty acid; and adding a metallic salt of a metal selected from the group consisting of Sn, Mg and Fe as a metallic catalyst into the mixture and mixing the mixture and the metallic salt. According to the present invention, metal nanoparticles have a uniform particle size distribution and a high yield by performing in a non-aqueous environment without using any organic solvent, and may be environment-friendlily due to no use of a reducing agent.
摘要:
The present invention relates to a metal ink composition for inkjet printing, more particularly to a metal ink composition which includes 20 to 85 weight % of metal nanoparticles and 15 to 80 weight % of organic solvent, where the organic solvent is made of an ethylene glycol-based ether or a mixed solvent including an ethylene glycol-based ether. The invention provides a metal ink composition in which an organic solvent suited for an inkjet head is used to improve the ejection, storage, and viscosity properties of the ink.
摘要:
The invention provides a method of manufacturing nickel nanoparticles and nickel nanoparticles thus produced, having superior dispersion stability and smooth surface, by reducing after forming nickel-hydrazine complex in a reverse microemulsion, wherein the method includes (a) forming an aqueous solution including nickel precursor, surfactant, and hydrophobic solvent, (b) forming nickel-hydrazine complex by adding a reducing agent that includes hydrazine to the mixture, (c) producing nickel nanoparticles by adding an reducing agent to the mixture that includes said nickel-hydrazine complex.
摘要:
The present invention relates to a method for manufacturing copper nanoparticles, in particular, to a method for manufacturing copper nanoparticles, wherein the method includes preparing a mixture solution including a copper salt, a dispersing agent, a reducing agent and an organic solvent; raising temperature of the mixture solution up to 30-50° C. and agitating; irradiating the mixture solution with microwaves; and obtaining the copper nanoparticles by lowering temperature of the mixture solution.According to the present invention, several tens of nm of copper nanoparticles having a narrow particle size distribution and good dispersibility can be synthesized in mass production.
摘要:
A method of processing image data according to an embodiment of the present invention includes: setting a permissible pitch range for a distance between adjacent ink blots; arranging image data for the line pattern in an x-y coordinate system; selecting a first base point corresponding to one side of the image data for the line pattern; selecting a first determination point from the first base point, in which the first determination point is parallel to and separated from one side of the image data for the line pattern; determining whether a distance between the first base point and the first determination point is within the permissible pitch range; and storing a coordinate as print data if the distance between the first base point and the first determination point is within the permissible pitch range, in which the coordinate is located at a shortest distance from the first determination point.
摘要:
The present invention relates to a method for forming fine wiring comprising: preparing a substrate for a printed circuit board; forming a metal thin sacrificial layer on the substrate using a first metal ink; forming a wiring on the metal thin sacrificial layer by inkjet printing using a second metal ink; and removing a portion of the metal thin sacrificial layer to form a wiring pattern. The method for forming fine wiring according to the invention can improve adhesiveness by using metal thin sacrificial layer and prevent spreading of ink in forming fine wiring.
摘要:
A method for surface modification of non-dispersible metal nanoparticles comprises mixing metal nanoparticles having an amorphous carbon layer on the surface with an alcohol or thiol solvent, mixing a capping molecule having a carboxylic head group in the mixed solution, and separating the metal nanoparticles from the mixed solution and the metal nanoparticles for inkjet printing thus modified.
摘要:
A circuit line forming device, including an inkjet head to eject a conductive ink onto one side of a substrate, the conductive ink containing nanoparticles including a ferromagnetic core and a conductive layer surrounding the ferromagnetic core; and a magnetic field generator part, positioned on the other side of the substrate in correspondence with the inkjet head, wherein the magnetic field generator part applies a magnetic field on the conductive ink, when the conductive ink is ejected to form circuit lines.
摘要:
The present invention relates to a method for manufacturing metal nanoparticles containing rod-shaped nanoparticles, the method including: producing metal oxide nanoparticle intermediates having at least rod-shaped metal oxide nanoparticles by heating a mixture of a nonpolar solvent, a metal precursor and an amine including secondary amine at 60-300° C.; producing metal nanoparticles by adding a capping molecule and a reducing agent to the mixture and heating the result mixture at 90-150° C.; and recovering the metal nanoparticles. According to the present invention, the shape of metal nanoparticle can be controlled by mixing primary amines or secondary amines as proper ratio without using apparatus additionally, as well as, the size of metal nanoparticle can be controlled to several nm.
摘要:
The present invention relates to a method for manufacturing copper-based nanoparticles, in particular, to a method for manufacturing copper-based nanoparticles, wherein the method includes producing CuO nanoparticles by mixing CuO micropowder and alkylamine in a nonpolar solvent and heating the mixture at 60-300° C.; and producing copper-based nanoparticles by mixing a capping molecule and a reducing agent with the CuO nanoparticles and heating the mixture at 60-120° C.According to the present invention, copper-based nanoparticles can be synthesized using CuO, but not requiring any inorganic reducing agent, in a high yield and a high concentration, so that it allows mass production and easy controlling to desired oxidation number of nanoparticles.