Abstract:
The present invention supports the control of a plurality of controlled devices. With three dimensional accelerometer components, detection of a user action on a remote controller and the orientation of the remote controller are viable through small electronic devices. Aspects of the invention are based on the three dimensional accelerometer components to provide a remote controller that can detect the user action. Based on the user action, the remote controller transmits a signal to the controlled device which conveys the corresponding command. A selected controlled device may be matched to the remote controller. The remote controller and controlled device may also support a learning mode, in which the controlled device sends a list of supported commands to the remote controller. The remote controller then matches an associated action with each command in the command list.
Abstract:
The present invention supports the remote control of a controlled device. A hybrid device receives a control signal over an infrared communications channel or a wireless networking channel. The hybrid device can replace an IR receiver module in the controlled device in order to provide backward compatibility as well as provide universal operation with a wireless networking controller. The hybrid device processes a signal received over one of the communications channels. When a signal is received over the infrared communications channel, the processor converts the signal to an output code that is sent to a device controller. When a signal is received over the wireless networking communications channel, the processor converts the signal to a wireless command, converts the wireless command to an output code, and sends the output code to the device controller. All output codes are transparent for the two communications channels.
Abstract:
The present invention provides methods and apparatuses for configuring an electrical device to a selected orientation. Direction information that is indicative of the orientation of the electrical device is provided by a directional detection switch. A processor selects a selected orientation from a plurality of permitted orientations by processing the direction information and instructs a display unit to operate in the selected orientation. Different adjacent contacts of a directional detection switch are activated corresponding to different orientation of the electrical device. A conductive ball may be positioned by gravity and consequently conducts an electrical current between two corresponding adjacent contacts based on the orientation of the electrical device. A display unit of an electrical device may include an output component or an input component that is configured based on the orientation of the electrical device.
Abstract:
The present invention provides apparatuses and methods for boiling a liquid such as water. The liquid is heated at full power when the measured temperature of the liquid is below a first predetermined threshold. When the temperature is above the first predetermined threshold and below a second predetermined threshold, partial power, which may be based on the duty cycle, is applied to the heater. When the measured temperature of the liquid reaches the second predetermined threshold, power is removed from the heater after a predetermined time. When the increase of the measured temperature is less than a predetermined temperature change during a predetermined time duration, it is determined that the liquid is boiling and power is removed to the heater. If the level is too high or too low, an alarm may be activated and/or power removed from the heater.
Abstract:
The present invention provides apparatuses and methods for boiling a liquid such as water. The liquid is heated at full power when the measured temperature of the liquid is below a first predetermined threshold. When the temperature is above the first predetermined threshold and below a second predetermined threshold, partial power, which may be based on the duty cycle, is applied to the heater. When the measured temperature of the liquid reaches the second predetermined threshold, power is removed from the heater after a predetermined time. When the increase of the measured temperature is less than a predetermined temperature change during a predetermined time duration, it is determined that the liquid is boiling and power is removed to the heater. If the level is too high or too low, an alarm may be activated and/or power removed from the heater.
Abstract:
The present invention provides apparatuses and methods for updating a target device from a clock device through a network. The clock device obtains a time value from a clock source and sends the time value to a target device. A node within the network determines a time delay, adjusts the time value in accordance with the time delay, and sends the adjusted time value to the target device. The node may determine a time delay from an internal timer or from a measurement message when adjusting the time value. The clock device may send a subsequent time update message to the target device if the target device does not acknowledge reception of a time update. The clock device may also send a time update message to a target device when a status change of daylight savings time occurs and obtain a subsequent time value from a clock source.
Abstract:
The present invention supports a solar lamp that includes a solar panel that charges a battery to power a display panel and a processor. Based on environmental factors measured by a sensor, the processor instructs the display panel to change colors based on the value of an environmental factor. If the measured environmental factor changes values, the processor may subsequently instruct the display panel to change colors. The solar lamp may be controlled by a remote controller. The solar lamp has a receiver circuit that receives control data from the remote controller to configure the display panel. Based on the control data, a processor may instruct the display panel to change colors or change intensity. The remote controller controls a solar lamp through a wireless communications channel. Based on an indication, a processor sends control data through a wireless transmitter circuit to configure the display panel of the solar lamp.
Abstract:
The present invention provides apparatuses and methods for providing security for a secured unit with a security code. The secured unit may be locked to prevent an unauthorized user from accessing the secured unit. In order to unlock the secured unit, a user enters a sequence of strokes through an input device, e.g., a circular input device. A security module extracts stroke information from the entered strokes and unlocks the secured unit when the extracted stroke information matches the security code. Stroke information may be indicative of the locations of the start and end points and the direction of each stroke. A security code is configured for a secured unit by a user entering a sequence of strokes through an input device. The security code is determined from stroke information. The stroke information may be verified by the user re-entering the sequence of strokes.
Abstract:
The present invention provides methods and apparatuses that support the transfer of data from a thermostat unit to a controller unit to control a variable speed heating, ventilation, and air conditioning (HVAC) system. The duty cycle of a signal (that is sent from a thermostat unit to a controller unit) is adjusted in accordance with a temperature difference between the ambient temperature of an environmentally controlled space and a set temperature. The controller unit measures the duty cycle to determine the temperature difference and adjusts the speed of a blower motor or compressor in accordance with the temperature difference. The signal is switched on and off, in which the AC waveform is conducted and blocked by the thermostat unit and received by the controller unit. The controller unit measures the duty cycle of the received signal, determines the temperature from the duty cycle, and adjusts the speed from a predetermined relationship.
Abstract:
The present invention controls a room temperature by controlling an environmental control unit. A total span about a setpoint temperature is adjusted in accordance with a previous total span and a multiplicative factor. The multiplicative factor is periodically updated from a desired cycle time and a previous cycle time. The room temperature may also be controlled by adjusting a duty cycle for controlling an environmental control unit. The duty cycle is adjusted based on an error associated with a previous control cycle and an attenuation factor. A new control cycle may be started by cutting the previous control cycle or a current control cycle may be extended if a predetermined condition is detected. The control mode is selected based on environmental characteristics and room characteristics. The control mode may include a span control mode and a duty cycle control mode that is selected from the cycle rate.