Abstract:
A filter assembly for fluid filtration having a push-activated lock and release mechanism. A push filter design activates a floating key lock upon insertion and extraction, where the filter key may be used simultaneously as a lock and as an identifier for particular filter attributes. The filter base may be situated inline, and in fluid communication, with influent and effluent piping, such as within a refrigerator. The filter housing assembly may be attached to, and removed from, the filter base by a push-actuated release. Upon insertion, the filter key shifts the filter lock longitudinally to receive interlocking segments. Upon extraction, the same axial push shifts the filter lock further to align the interlocking fingers within gaps that allow for easy extraction. The specific key lock design allows a user to identify and match certain filter configurations received by the mechanical support, and reject other filter configurations.
Abstract:
A modular water filtration system including a first filter manifold and a second filter manifold is provided. The first filter manifold includes a first bracket and a first pair of arm members horizontally extending from the first bracket. One of the first pair of arm members includes a protrusion defining a bore. The second filter manifold includes a second bracket and a second pair of arm members horizontally extending from the second bracket. One of the second pair of arm members includes a duct, and the duct is configured to receive the protrusion of the first filter manifold to provide fluid communication through the bore between the first filter manifold and the second filter manifold.
Abstract:
A hollow filter element of a fluid filter has a filter element-associated retention/carrier device of a retention/carrier system retaining the filter element in a first housing section of a filter housing during installation/removal in or from a second housing section by rotation and/or insertion movement. The filter element-associated retention/carrier device has a retention/carrier part extending radially and circumferentially and has through holes adjacent thereto extending circumferentially so as to enable a filter housing-associated retention/carrier part of the retention/carrier system to pass through axially. This retention/carrier part has a tensile face extending circumferentially and radially on a side facing away from an end face of the filter element facing the first housing section. This retention/carrier part has a rear side in circumferential direction. A space axially adjacent to the tensile face is connected on the rear side to a through hole for guiding through the filter housing-associated retention/carrier part.
Abstract:
A water filtration system that includes a filter manifold having a rotatable cover is provided. A filter cartridge is provided that includes a sump having a filter head integrally secured to a first end and cap releasably secured to a second end. A locking mechanism extending from the cover locks into the filter manifold to position the cartridge in an “in-use” state. The filter cartridge further includes two offset cylindrical inlet and outlet members protruding from the filter head that are designed to engage corresponding inlet and outlets of the filter manifold through a horizontal engagement mechanism. A check valve is positioned within the filter manifold adjacent the inlet of the filter cartridge to control fluid flow through the water filtration system. The filter cartridge head includes fins upwardly extending therefrom that are configured to engage corresponding slots formed in a plurality of corrugated channels of the filter manifold.
Abstract:
A filter cartridge (30) comprising a substantially tubular filter wall (33) and a support plate (32) fixed to an end of the filter wall (33), where the support plate (32) comprises a hooking body (34, 2120) rising from a surface of the support plate (32) opposite the filter wall (30) and defining a profiled surface (3410,3411;2130,2131) substantially perpendicular to the central axis of the filter wall (33) and defining at least two corners (3412,3413;2132,2133) proximal to the central axis, which exhibit different distances from the central axis of the filter wall.
Abstract:
Fluid filter cartridges, in particular fuel filter cartridges, fluid filter arrangements, and methods for servicing a fluid filter arrangement.
Abstract:
A filter element includes a substantially cylindrical center tube having a first end, a second end opposite the first end, and a central longitudinal axis. The filter element also includes filter media extending circumferentially around and longitudinally along the center tube, and a plate connected to the center tube proximate the first end. The plate includes an orifice and a cap. The orifice includes a pilot feature configured to locate the filter element at a single circumferential position relative to the longitudinal axis, the cap extending from a top surface of the plate toward the second end and having an inner wall configured to mate with a drain plug. In such embodiments, the orifice and the cap are disposed radially inward of an inner circumference of the center tube, and at least one of the orifice and the cap extends circumferentially around an additional longitudinal axis spaced radially from the central longitudinal axis of the center tube.
Abstract:
A top load liquid filter assembly includes a filter lockout mechanism to ensure that the filter base and cover are not connectable unless there is a proper filter cartridge installed therein. The filter system can also include an automatic drain mechanism and a cartridge retention mechanism. One example embodiment further includes an air bleed vent. A filter cartridge usable in the topload liquid filter assembly includes first and second protrusions and cover-gripper members. Methods of use, installing, servicing, and retaining can be practiced.
Abstract:
A filter having a filter housing, an inlet for liquid to be filtered and an outlet for filtered liquid. An exchangeable filter insert separates an unfiltered side and a filtered side of the filter. A filter bypass valve has a valve seat and a valve body guided so as to be movable relative to the valve seat and preloaded in the closing direction. The valve seat is fixed to the filter. The valve body is guided in the filter so as to be fixed to the filter. A spring that preloads the valve body in the closing direction is guided in the filter so as to be fixed to the filter. The filter insert has a spring support that, in the state in which the insert is placed into the filter housing, supports and pre-stresses the spring at its end facing away from the valve body.
Abstract:
A filter and its holder each have a keyed surface, one being a protruding “key” and one being a recessed “lock,” wherein cooperation of these keyed surfaces is required in order for the filter to be installed in the holder. Modification/adaptation of the keyed surfaces, by changing the location, number and length of the key protrusions and cooperating recesses during manufacture, allows various sets of mating filters and holders to be produced so that only mating/matching filters and holders may be connected together. The keyed protrusions are preferably located on an upper shoulder or on protruding flange(s) of the upper end of the filter. The cooperating recess structure inside the filter holder comprises axial recesses that allow axial insertion of the key protrusions, and hence the filter, into the holder and also a circumferential recesses portion that receives multiple key protrusions to retain the filter in the holder. This way, multiple key protrusions slide into and are retained in a single circumferential recess/slot, rather than each key protrusion being received in its own separate circumferential recess/slot.