Abstract:
Crosslinked gelling agents employed during subterranean operations use electronically-modified boronic acids to enable higher operating temperatures while allowing reduced gelling agent loadings; the boronic acids having Formula I: wherein X1 and X2 are independently selected from the group consisting of O, CH2, CH2O, OCH2, bond, and null and wherein either X1 or X2 is null, Y1 and Y2 are independently N or C, Ar is phenyl; m is 1 or 2, n is 0, 1, 2, or 3, and each Z is independently an electron withdrawing group selected from nitro, ester, carboxylic acids, carboxylates, halogen, cyano, amide, acyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, CF3, a quaternary ammonium salt, polyhaloalkyl, and carbamate, with the proviso that when n is 0, the link L between M1 and Ar includes an electron withdrawing group attached to Ar, and introducing the treatment fluids into subterranean formations.
Abstract:
A method of treating a subterranean formation penetrated by a wellbore, the method including the introduction a treatment fluid comprising an aqueous fluid composition comprising an aldehyde releasing compound.
Abstract:
A persulfate compound activated by a strong base is used for low-temperature breaking of fluids viscosified with a multi-chain polysaccharide. The breaker system can be used in an oilfield or pipeline application where a multi-chain polysaccharide may be used in a fluid. It is particularly useful at low temperatures of less than 100° F. Optionally, the water can be a brine.
Abstract:
A method of forming a wellbore fluid, the method including introducing a hydratable polymer and introducing a crosslinker comprised of at least a silica material, the crosslinker having a dimension of from about 5 nm to about 100 nm.
Abstract:
A method of treating a portion of a subterranean formation comprises providing a treatment fluid comprising a carrier fluid, a viscosifying agent, a breaker, and a breaker aid wherein the breaker aid slowly releases a catalyst, wherein the viscosifying agent and the breaker in the carrier fluid have an initial viscosity and the catalyst and the breaker cooperate to decrease the viscosity of the treatment fluid below half of the initial viscosity after at least 30 minutes; and treating the subterranean formation.
Abstract:
Produced or flowback water from an underground reservoir having been treated with a fluid containing a viscosifying polymer and a vitamin B1 and/or ylide breaker may be recycled by deactivating the vitamin B1 and/or ylide breaker with a sulfur or phosphorus containing nucleophilic agent.
Abstract:
A method of forming a fracturing fluid including mixing produced water or boron-containing oilfield water having an in-situ boron concentration greater than about 20 mg/L at the time of mixing with a hydratable boron crosslinkable polymer to form a fracturing fluid.
Abstract:
Compositions include (1) aggregating compositions capable of forming deformable partial or complete coatings on formation surfaces, formation particle surfaces, downhole fluid solid surfaces, and/or proppant surfaces, where the coatings increase aggregation and/or agglomeration propensities of the particles and surfaces to form particles clusters or pillars having deformable coatings, and (2) aggregation stabilizing and/or strengthening compositions capable of altering properties of the coated clusters or pillars to form consolidated, stabilized, and/or strengthened clusters or pillars. Methods for stabilizing aggregated particle clusters or pillars include (1) treating the particles with an aggregating composition to form aggregated clusters or pillars and (2) treating the aggregated particle clusters or pillars with a stabilizing or strengthening composition to form consolidated, stabilized, and/or strengthened clusters or pillars.
Abstract:
The present invention provides compositions including poly(alkenylamide)-polysaccharide hydrogels for treating a subterranean formation and methods of using the same. In various embodiments, the present invention provides a method of treating a subterranean formation, including obtaining or providing a composition including a poly(alkenylamide)-polysaccharide hydrogel. The method also includes placing the composition in a subterranean formation. In some embodiments, the poly(alkenylamide)-polysaccharide hydrogel is a polyacrylamide-alginate hydrogel.
Abstract:
A method includes adding an amount of chlorine dioxide from about 10 ppm to about 400 ppm to an aqueous base fluid to provide a treated fluid, adding a water-soluble polymer to the treated fluid, thereby forming a hydrated polymer, the amount of chlorine dioxide added confers a viscosity increase allowing a reduction in the amount of water-soluble polymer to obtain a target viscosity by about 25% to about 75% relative to a control fluid lacking chlorine dioxide.