Abstract:
A brake assembly for locking a vertical or horizontal slidable sash window or door within a track of a frame is disclosed. The track has an elongated base and a pair of spaced apart, opposed sidewalls extending perpendicular from the base. Each sidewall has an inner shoulder spaced from and parallel to the base. The assembly has a slider body having a central opening extending from a front face of the body to a rear face of the body. The slider body has a side opening in each side of the slider body and being in communication with the central opening. A pair of brake members are provided wherein one brake member is slidably positioned within a respective one of the side openings. A cam has a rear face and a front face, and is adapted to receive a pivot member mounted on either the sash window or door. The cam is positioned in the central opening and is adapted to be rotatable within the opening by the pivot member. The cam, slider body and brake members include cooperative structure for converting rotary motion of the cam into radial movement of the brake members through the side openings and axial movement of the cam and slider body to lock the brake assembly within the track.
Abstract:
A power drive system is adapted for a sliding door mounted on at least one side of a vehicle for sliding movement forwardly and rearwardly of the vehicle. The system includes a reversible motor. A bracket is guided within a guide along a fixed path between the opened and closed positions of the door. An elongated drive member is slidably disposed within the guide and connected to the bracket at one end for driving the bracket along the fixed path. A translator mechanism operably engages with the drive member for powering movement of the door. The translator mechanism can include a rotatable hub, operably engageable with the drive member, a gear transmission for driving the hub, and a clutch mechanism for connecting the motor to the transmission. The translator mechanism preferably has sufficient power to pull the sliding door into a primary latch position with respect to the corresponding portions of a latch mechanism attached to the door and frame defining the door opening. A power striker moves the door into and out of sealing engagement with the frame. A lock mechanism selectively maintains the latch in a locked position. At least one sensor provides an input signal to a control system corresponding to movement of the door, position of the lock mechanism, and position of the power striker for controlling the door drive unit, power striker drive unit, and lock mechanism drive unit in accordance with a program stored in memory.
Abstract:
A combined sliding and pivot window assembly including a plurality of sashes separately pivotally mounted on substantially C-shaped sash support frames that are slidably fixed on rails provided on an outer window frame. The window assembly includes combined sliding and locking mechanisms that allow the C-shaped sash support frames to slide on the rails when the sashes are pivotally closed, or to be locked on the rails when the sashes are pivotally opened, or to be pushed to one side in the outer window frame while allowing all the sashes to be pivotally opened; pivot mechanisms that allow the sashes to be pivotally opened and stay at any desired open position relative to the sash support frames; and elastic two-end locking mechanisms that are mounted in a vertical member of the sashes to lock the sashes at upper and lower ends to the sash support frames simply by laterally shifting an external adjusting key of the two-end locking mechanism. The combined sliding and pivot window assembly is therefore safer and more convenient for use.
Abstract:
The present invention is a compact door coordinator which includes a relatively narrow housing having mounted therein and extending therefrom a lead control lever and a longer trailing control lever. Both control levers are spring biased to extend from the housing when the doors are open. A relatively simple linkage extends from the lead control lever to the trailing control lever for retaining the ladder in its extended position until the lead door contacts the lead control lever. At that point, the lead control lever is pushed into the housing and rotated against the force of a torsion spring, causing the linkage to move and thereby rotating a cam which then releases the trailing control lever allowing the trailing door to push the trailing control lever into the housing to complete the closing process. When the doors are reopened, the force of the torsion springs causes the lead and trailing levers to once again extend from the housing while resetting the cam to retain the trailing lever in its extended position until it is released.
Abstract:
A valve element for operative association with a valve seat in a passage in a body in which the valve element is mounted, in use, the valve element comprising first and second portions connected together by snap-fit means, the first portion being screw-threaded for mounting it in said body, and part of the second portion interrupting said screw-thread of the first portion.
Abstract:
A vehicle power liftgate cable drive has a cable drive housing. An electric motor with a motor housing and an output shaft is secured to the cable drive housing. A clutch pack with a first clutch driven by the output shaft and a second clutch driven by the first clutch, is mounted in the cable drive housing. One of the clutches in the clutch pack is a one way clutch and the other clutch is an electromagnetic clutch. A pinion gear is driven by the second clutch. An output gear is rotatably journaled on a fixed shaft and driven by the pinion gear. The cable drum is attached to the output gear. A coil spring has one end fixed to the fixed shaft and its other end attached to the cable drum. The fixed shaft is rotated to preload the coil spring in a direction that tends to wind a cable on the cable drum and then the fixed shaft is fastened to the cable drive housing. A cable is attached to the cable drum and to the liftgate. A solenoid plunger cooperates with the output gear to stop the liftgate in an intermediate position.
Abstract:
A control system for an electrical motor drive for moving a door between end positions. The two end positions are detected by the control system, and an increment detector associated with the motor drive reproduces the movement cycle of the door. A stop associated with the motor drive marks an end position of the door that corresponds to the open position thereof. This open position is treated as a reference point. A pulse storage device is set to a specific value at this reference point and initiates the beginning of a pulse sequence to reproduce movement of the object between the end positions. The pulse sequence is compared for coincidence with pulses produced by the increment detector upon movement of the door into the opposite end position that corresponds to its closed position.
Abstract:
An arrangement for precisely mounting a door on a vehicle body by a door on-door off hinge assembly. A door hinge flange has upper and lower transversely elongated slots and an intermediate rectangular tab opening symmetrically disposed on a common vertical axis. A tapping plate has a base formed with upper and lower bores and a central hook-like resilient tab member lanced-out from its base. The base mating face has a thermosetting film adhesive affixed thereto while an upper tapered locator pin extends therefrom adapted to pass through a door hinge flange clearance aperture and seat in a net hole in the door hinge web to establish a precise re-mounting location of the door hinge. Upon the tapping plate being hung on the flange inner surface, by virtue of the tab member being hooked through the flange tab opening, the locating pin extends through a clearance aperture in the door flange and a net hole in the base. As the door hinges are loose fitted to the body hinge flange prior to hanging the door on the body, the tapping plate and door hinge adjustably slide on the flange allowing the door and body panel outer surfaces to be precisely aligned. Upon the body moving through an assembly line painting stage curing the adhesive film and bonding the tapping plate face to the door flange inner surface.
Abstract:
A power drive for a sliding door includes a slider for guided sliding movement along a fixed path between first and second end limits of movement. The slider operably engages with a sliding door to impart motion from the slider to the sliding door when traveling in a first direction. A reversible power drive is provided for driving the slider along the fixed path between the first and second end limits of movement in first and second directions of travel. A latch release, coupling the slider to the sliding door, initially releases a latch mechanism and, after release of the latch mechanism, transfers motion from the slider to the sliding door when traveling in the second direction.
Abstract:
The invention relates to electrical drive apparatus for a vertically displaceable blackboard. In order to obtain synchronous operation of such drive apparatus either one motor, one shaft, or two motors connected by means of an electrical shaft were employed. The apparatus according to the invention operates with an electric motor which is combined with a worm drive, a drive sheave, and a slip coupling to a unit which is mounted at the top inside the guide beams of the blackboard, with the motor arranged vertically and having a hollow shaft through which the drive cable is guided. One such drive apparatus is mounted in each guide beam at its top, with simultaneous switching on and switching off without an electrical shaft.