Abstract:
A vehicle door cinching apparatus for assisting the final closing motion of a sliding vehicle door includes an electromagnet, a ferrous metal plate, a cinch drive and a controller. The electromagnet mounts on either an outer periphery of a vehicle sliding door or an inner periphery of a vehicle sliding door frame that's shaped to receive the sliding door as the door moves along a final inward cinching portion of a door path to a final closed position within the door frame. The plate is supported on the other of the outer periphery of the door and the inner periphery of the door frame in a position where the plate can magnetically engage the electromagnet when the door is disposed along the final cinching portion of the door path. Whichever of the plate and electromagnet is supported on the inner periphery of the door frame is also supported for lateral movement in a direction generally parallel to the cinching portion of the door path. According to the method, the cinch drive moves whichever of the electromagnet and plate is supported on the inner periphery of the door frame to drive the door along the final cinching portion of the door path and into the final closed position. The controller de-energizes the electromagnet and releases the door from the cinching apparatus once the door has reached its final closed position.
Abstract:
A power liftgate drive assembly moves a liftgate of a motor vehicle between an open position and a closed position. The power liftgate assembly is aligned along the side of the motor vehicle. A liftgate rod extends in a generally vertical orientation between the power liftgate drive assembly and the liftgate. The assembly includes a base that is fixedly secured to the motor vehicle near a load floor. A guide extends upwardly from the base. The guide extends along the side of the motor vehicle and is disposed adjacent the liftgate when the liftgate is in the closed position. A liftgate carriage is connected to the guide. The liftgate carriage slides along the guide. The liftgate rod is pivotally connected between the liftgate carriage and the liftgate. The liftgate rod translates the linear movement of the liftgate carriage into the pivotal movement of the liftgate to move the liftgate between the open and closed positions
Abstract:
A side sliding door apparatus for an electric railcar includes two sliding doors movably supported by a horizontal door rail to open and close an entrance of the electric railcar. The side sliding door apparatus includes an actuator for actuating the sliding door, a locking mechanism for locking the sliding door in a closed state, and an unlocking mechanism for unlocking the sliding door locked by the locking mechanism. The actuator, the locking mechanism, and the unlocking mechanism are provided in each of the two sliding doors. The right and left actuators operate independently from each other, and thus, even if the actuator for one sliding door breaks down, the other sliding door still can be used.
Abstract:
An actuating system, comprising a base part and a moving part, which can be moved by a compressively preloaded piston/cylinder assembly that comprises a cylinder and a piston rod, wherein a piston on the piston rod divides the cylinder into two working chambers, wherein the base part has an externally powered drive device that stands in operative connection with the moving part and functions in opposition to the operating force of the piston/cylinder assembly, wherein a control system monitors the motion of the moving system and detects an obstacle when a parameter representing the motion deviates from a stored parameter by a threshold limit, wherein the actuating system in the unpowered state holds the moving part with the aid of a locking device, wherein the locking device is formed by a flow connection between the working chambers of the piston/cylinder assembly and a pilot valve for controllably blocking fluid flow through the flow connection.
Abstract:
A passenger van is equipped with a drive mechanism for power operation of a slideable side door. The drive mechanism has a flexible drive member that travels in a closed loop which includes travel through a center track that supports and guides a hinge and roller assembly that is attached to the rear of the side door. The flexible drive member has a cogged portion that is driven by an electric motor to open and close the side door. The remaining portion is uncogged for economy o f manufacture and for releasing the flexible drive member from a clutch of the hinge and roller assembly to open the side door manually very easily. An electromagnetic clutch may also be included to reduce manual operating effort.
Abstract:
An automatic door assembly including a sliding door and an electric motor drivingly coupled to the sliding door. The electric motor includes a clutch movable between a locked position preventing rotation of the electric motor and an unlocked position permitting rotation of the electric motor.
Abstract:
Door operator for opening, closing and locking at least one door panel on a transit vehicle. The door operator has at least one base portion for mounting on the vehicle and at least one fixed support member attached to the base portion. The door operator has door hangers for attachment of the door panel to the fixed support member and moveable door support members attached to the door hangers. The moveable door support members engage the fixed support member to support the door panel while permitting opening and closing motions of the panel. The operator includes at least one door drive having a base mounted portion and a hanger mounted portion engaging the base mounted portion to be moved thereby to move the panel in opening and closing directions. The operator has a lock for securing the door panel in a closed position, the lock having a lock shaft which includes at least one primary lock device for preventing motion of the base mounted door drive portion and at least one secondary lock device engaging one of the door hangers. The lock includes a lock shaft engaging mechanism which rotates the lock shaft to a locking position when the door panel is closed. The lock also has an unlocking actuator for unlocking the door panel, the unlocking actuator having a moveable portion connected to the lock shaft to rotate the lock shaft to the unlocking position.
Abstract:
A sliding door of a vehicle is braked in accordance with a position of the door. The braking is controlled such that the door speed is greater at the beginning of a door-opening or door-closing operation than at the end of the door-opening or door closing operation.
Abstract:
A drive arrangement for articulating a liftgate of a motor vehicle between an open position and a closed position. The liftgate is mounted to a body of the motor vehicle for articulation about a pivot axis. The drive arrangement includes a mounting member for attachment to the body of the motor vehicle. A drive motor is attached to the mounting member. A crank arm is pivotally interconnected to the mounting member. The crank arm includes a driven gear. A linkage includes a first end attached to the crank arm and a second end attached to the liftgate. A drive gear is driven by the drive motor. A clutching mechanism is operative for selectively coupling and decoupling the driven gear to the drive gear.
Abstract:
At the time of changing over an open/close body from a manual operation to an automatic operation, a reliable clutch connection is established in a power transmission system between a drive source and the open/close body thus enhancing the operability of the open/close body. An open/close body automatic drive equipment comprises a clutch mechanism which connects or interrupts a power transmission system between a motor for driving a slide door which constitutes the open/close body and the slide door, wherein a clutch of a clutch mechanism is interrupted in a manual manipulation, and in an automatic drive, a clutch is connected to operate the slide door. In such an equipment, a brake mechanism for restricting the movement of the slide door is disposed in the midst of the power transmission system, the moving speed of the slide door is detected, and in case the moving speed is higher than a given speed, the movement of the slide door is restricted by the brake mechanism BK, and then the clutch connection of the clutch mechanism is performed.