摘要:
A run-of-the-river or ocean current turbine may comprise a hatch and a slanted block having protector ribs for directing water flow to a waterwheel. The hatch may be controlled by a plurality of Transgear™ gear assemblies for varying the amount of water flow to the waterwheel from extreme drought to flood conditions so that the waterwheel may turn at rated speeds and within a predetermined range. The Transgear gear assemblies may comprise an accumulator for accumulating a rough and a fine tuned waterwheel speed. The Transgear assemblies may comprise embodiments of power take-off switches for, for example, bi-directional or clockwise and counterclockwise waterwheel shaft rotation. The turbine may be aligned for top-feed, side-feed or bottom feed of water and may comprise a tail wing or first and second turbines facing in opposite directions to capture high and low tidal flow.
摘要:
A hybrid power train for a vehicle may include a gear module having a plurality of shift stages of a synchromesh type on a first input shaft and an output shaft arranged in parallel, a second input shaft driven by a motor and disposed coaxially with the first input shaft, a clutch means for connecting or disconnecting the second input shaft and the first input shaft, and variable shift ratio providing means for transmitting the torque of the second input shaft to the output shaft through an external engaged-gear pair selectively in two different shift ratios.
摘要:
A brake mechanism of a robot using a multi-output differential gear, capable of selectively blocking or applying driving force as needed, the brake mechanism including: a differential gear unit receiving driving force and generating at least three outputs differentiated from the driving force while being linked with the driving force; a driving unit transferring the driving force to the differential gear unit and moving in a direction away from or approaching the differential gear unit to thereby be detachably provided in the differential gear unit; and a rescuing unit controlling a spaced distance between the driving unit and the differential gear unit to attach and detach the driving unit to and from the differential gear unit
摘要:
A run-of-the-river or ocean current turbine may comprise a hatch and a slanted block having protector ribs for directing water flow to a waterwheel. The hatch may be controlled by a plurality of Transgear™ gear assemblies for varying the amount of water flow to the waterwheel from extreme drought to flood conditions so that the waterwheel may turn at rated speeds and within a predetermined range. The Transgear gear assemblies may comprise an accumulator for accumulating a rough and a fine tuned waterwheel speed. The Transgear assemblies may comprise embodiments of power take-off switches for, for example, bi-directional or clockwise and counterclockwise waterwheel shaft rotation. The turbine may be aligned for top-feed, side-feed or bottom feed of water and may comprise a tail wing or first and second turbines facing in opposite directions to capture high and low tidal flow.
摘要:
The present invention relates a mechanical differential actuator for interacting with a mechanical load. The mechanical differential actuator comprises first and second semi-active sub-actuators, a velocity source and first and second mechanical differentials having three interaction ports each. The first mechanical differential includes a first interaction port coupled to the velocity source, a second interaction port and a third interaction port coupled to the first semi-active sub-actuator. The second mechanical differential includes a first interaction port coupled to the velocity source, a second interaction port and a third interaction port coupled to the second semi-active sub-actuator. Finally, the second interaction ports of the first and second mechanical differentials are coupled together to form an output which is configured so as to be coupled to the load.
摘要:
The invention discloses a mechanical torque converter (100) having a casing (6), an input shaft (2) entering casing (6) and rotatable within the casing (6). An output shaft (5) exits casing (6) and is rotatable within casing (6). A gearbox (1) is located within casing (6) and coupled to input shaft (2). An escapement device (3) is within casing (6) and coupled to gearbox (1) to brake gearbox (1) under low speed and a clutch (4) co-operates with output shaft (5) and gearbox (1 ).
摘要:
Variable motion control devices and methods of use. The devices and methods relate to providing an output, such as a rotational shaft output, transmitted from a rotational shaft input, with the output varying based on a control input. The devices and methods are used, for example, to provide a variable output for use with a compressor, power take off, or transmission or differential application. To provide the variable output, the devices and methods include use of mechanical component systems, such as spur gear planetary systems, ring gear planetary systems, bevel gear arrangements, or combinations of such features. The control input is implemented, for example, by arrangements of bindably meshed gears, tension between pulleys joined by belts or similar arrangements of sprockets and chains, use of magnetic clutches, hydraulic or pneumatic controls, or braking devices.
摘要:
Transmission systems are disclosed which include a dual sunwheel system having an output sunwheel (70) and a control sunwheel (80). A planet cage (18) is arranged around the dual sunwheel system and includes a planet gear (62) in mesh with the sunwheel (70) and a planet gear (64) in mesh with the sunwheel (80). The planet gears (62, 64) are coupled to one another. The drive ratio of the transmission is controlled by controlling the cage (18) or the control sunwheel (70). The speed of rotation of the input (22), output (20) and control sunwheel (70) are sensed by sensors (90) and control signals are generated to control a control device to thereby control the rotation of planet cage (18) or the control sunwheel (80) to thereby set the drive ratio of the transmission. The control devices can include a motor, one or more magnetic powder clutches, a variable centroid system and a mechanical pitch transfer gear system.
摘要:
A magnetorheological (MR) fluid coupling for vectoring torque with respect to a shaft capable of rotary motion is disclosed. The coupling includes a stator, a rotor having a rotational degree of freedom with respect to the stator and configured for physical communication with the shaft, and a magnetic field generator. The stator and rotor define an annular space therebetween and are coupled via a MR fluid disposed within the annular space. The magnetic field generator is in field communication with the MR fluid and is disposed to produce a substantially radially directed magnetic field across the annular space. The rotor is rotationally responsive to the application of a magnetic field at the MR fluid.
摘要:
Variable motion control devices and methods of use. The devices and methods relate to providing an output, such as a rotational shaft output, transmitted from a rotational shaft input, with the output varying based on a control input. The devices and methods are used, for example, to provide a variable output for use with a compressor, power take off, or transmission or differential application. To provide the variable output, the devices and methods include use of mechanical component systems, such as spur gear planetary systems, ring gear planetary systems, bevel gear arrangements, or combinations of such features. The control input is implemented, for example, by arrangements of bindably meshed gears, tension between pulleys joined by belts or similar arrangements of sprockets and chains, use of magnetic clutches, hydraulic or pneumatic controls, or braking devices.