Abstract:
A device for controlling an amount of light of a lighting unit for use in an endoscope that is used to view an image of an object. A light shielding system shields light generated by a light source and transmitted to the endoscope and a stepping motor drives the light shielding system for a plurality of predetermined time intervals. A system detects a brightness of the image during each of the plurality of predetermined time intervals and an input system inputs one of a plurality of desired brightnesses of the image. A generating system generates a predetermined number of pulses during each of the plurality of predetermined time intervals, the predetermined number of pulses being transmitted to the stepping motor and a system determines an angular position of the light shielding system. A setting system sets one of a plurality of allowed brightness ranges of the image in response to the determined angular position of the light shielding system and a system determines whether the detected brightness is within the set one of the plurality of allowed brightness ranges.
Abstract:
A device for controlling an amount of light of a lighting unit for use in an endoscope, used to view an image of an object. The device includes a light shield system for shielding light generated by a light source and transmitted to the endoscope. A stepping motor drives the light shield for a series of predetermined time intervals. Brightness of the image is detected during each of the time intervals and pulses are generated during each of the time intervals. One of a plurality of brightness ranges is set in accord with desired brightness of image. A determination is made as to whether the detected brightness is within one of the ranges. The pulses generated are used to drive the stepping motor in each of the plurality of time intervals.
Abstract:
An electronic device for measuring extremely faint light emissions comprises a photomultiplier tube surrounded by a sleeve made of a material which is a good heat conductor, cooled to a low temperature and insulated from the outside, a thermally insulating and optically transparent lightguide body being stably glued to the photocathode of the photomultiplier tube to receive the light radiation emitted by a specimen to be examined, which is inserted in a cavity of a supporting structure holding a rotary body which can be turned in front of the lightguide body, so as to operate as a shutter for the lightguide in a first turned measurement position thereof to allow measurement of the dark signal and then allow, as the rotary body and the specimen held therein are turned to a second measurement position, to measure the light emission from the specimen.
Abstract:
A sensor circuit for detecting light hazards or bright light sources that will cause discomfort. The sensor and sensor electronics which provide a wide sensitivity range which is fully automatically adjustable, and which has the ability to detect point sources of light. The sensor further has the ability to distinguish low power stable light generated from a small welding arc from bright ambient light or even direct sunlight.
Abstract:
A photometer includes a luminous flux splitter that splits a luminous flux incident from a single light receiving optical system and guides the luminous flux to a finder optical system and a photometric part. A light receiver is arranged at a position to receive at least a part of light split into the finder optical system by the luminous flux splitter and generates an output for light emission profile analysis according to a light reception result.
Abstract:
A photometer includes a luminous flux splitter that splits a luminous flux incident from a single light receiving optical system and guides the luminous flux to a finder optical system and a photometric part. A light receiver is arranged at a position to receive at least a part of light split into the finder optical system by the luminous flux splitter and generates an output for light emission profile analysis according to a light reception result.
Abstract:
An optical sensing device for using light to locate objects or features in a field of view comprises a light source; a controllable lens having two states and being controllable between them, for example a multifocal lens having two or more foci for focusing light from the light source; and a sensor able to sense light reflected from an object, to determine information of the object. The use of two or more foci adds dynamic range to optical sensing to allow for reliable detection over a wide range of distances.
Abstract:
An adjustable aperture device for an electromagnetic radiation detecting apparatus includes a position adjustment body configured for adjusting a position of a selected aperture hole of multiple selectable aperture holes, where electromagnetic radiation propagates through the selected aperture hole. The adjustable aperture device further includes a guide unit configured for guiding the position adjustment body along a predefined guide direction, and an aperture body defining the aperture holes and including multiple engagement sections, where the adjustment body is engagable in a selectable one of the engagement sections to thereby select the selected aperture hole. The adjustable aperture device further includes a pre-loading element configured for pre-loading the position adjustment body towards the aperture body, and a drive unit configured for driving the aperture body to move so that the position adjustment body is engaged in a respective one of the plurality of engagement sections.
Abstract:
The present invention relates to an apparatus for detecting photons according to an atmospheric condition, using a function of adjusting light quantity that can significantly improve reliability of an atmospheric condition analysis result by minimizing noise in a spectrum by maintaining the quantity of incident light uniform within a predetermined range regardless of atmospheric conditions and changes, and to a method of adjusting light quantity. The apparatus for detecting photons in accordance with atmospheric conditions using a function of adjusting light quantity includes: an apparatus case having a light inlet; a light quantity adjuster disposed under the light inlet and adjusting quantity of incident light such that a predetermined quantity of light travels inside; and a controller controlling operation of the light quantity adjuster in accordance with intensity of light detected by the light quantity adjuster.