Abstract:
A low power consumption multi-contact micro electro-mechanical strain/displacement sensor and miniature autonomous self-contained systems for recording of stress and usage history with direct output suitable for fatigue and load spectrum analysis are provided. In aerospace applications the system can assist in prediction of fatigue of a component subject to mechanical stresses as well as in harmonizing maintenance and overhauls intervals. In alternative applications, i.e. civil structures, general machinery, marine and submarine vessels, etc., the system can autonomously record strain history, strain spectrum or maximum values of the strain over a prolonged period of time using an internal power supply or a power supply combined with an energy harvesting device. The sensor is based on MEMS technology and incorporates a micro array of flexible micro or nano-size cantilevers. The system can have extremely low power consumption while maintaining precision and temperature/humidify independence.
Abstract:
A force sensor is suitable for an electrohydraulic hitch control system of an agricultural tractor. The force sensor has an outer cylindrical part with a bore and a measuring rod fixed on one side in the bore. A central section of the cylindrical part is provided as force introduction section. Two outer sections of the cylinder part are removed equally far axially from the center of the force introduction section and are provided as abutment sections. The measuring rod is clamped in an area of the force introduction section.
Abstract:
An illustrative device capable of detecting a bearing force includes a support rigid by tension and at least one plate that is elastically deformable by the bearing force from a bent conformation in which the plate exhibits a convex bearing face on which the bearing force to be detected is directly exerted and to a more flattened conformation in which the convex bearing face is more flattened. The illustrative device further includes a spring capable of permanently straining the plate to its bent conformation, a guiding mechanism mounted on the support and capable of guiding the free distal end of the plate in translation along a translation axis at right angles to the direction of indentation, and a sensor capable of detecting a displacement of the free distal end along the translation axis to detect the bearing force.
Abstract:
Disclosed is a force sensor and an apparatus having the sensor for measuring weight. The force sensor and apparatus can enhance detection sensitivity by amplifying a displacement of an elastic body having high strength, thereby measuring weight. The sensor includes: a base; an elastic structure provided as a housing disposed on the base, and downwardly deformed when weight is applied to the elastic structure; an adjusting member coupled to an upper surface of the elastic structure by penetrating the upper surface; a lever disposed below the elastic structure, and amplifying a displacement of the elastic structure transferred via the adjusting member by being in contact with the adjusting member; a sensor disposed above the base, and generating an electric signal indicative of a distance from the sensor to the lever; and a circuit board disposed between an upper surface of the base and a lower surface of the sensor.
Abstract:
A weight sensor may include a weighing platform and a load cell coupled to the platform to sense a weight applied to the platform, the load cell may include a deformable plate with one or more strain gauges arranged to provide an electrical signal representing the weight applied to the platform, and a base supporting the load cell, wherein the deformable plate is movably mounted to the base at only three contact points, the contact points allowing lateral movement of the plate when the plate deforms in response to a weight applied to the platform. The weight sensor makes it possible to monitor the weight and weight shifting of two people sharing the bed. The weight sensor is self-centering when a load is applied off-center to the platform, which is beneficial when used underneath a bed, e.g., under a bed leg or other support member which may not be aligned.
Abstract:
Nonlinear spring. In one embodiment, the spring includes two opposed curved surfaces curving away from one another. A flexible cantilever member is disposed between the two opposed curved surfaces and a mass is attached to a free end of the cantilever member wherein the flexible cantilever member wraps around one of the curved surfaces as the cantilever member deflects to form a nonlinear spring. Energy harvesting devices and a load cell are also disclosed.
Abstract:
Nonlinear spring. In one embodiment, the spring includes two opposed curved surfaces curving away from one another. A flexible cantilever member is disposed between the two opposed curved surfaces and a mass is attached to a free end of the cantilever member wherein the flexible cantilever member wraps around one of the curved surfaces as the cantilever member deflects to form a nonlinear spring. Energy harvesting devices and a load cell are also disclosed.
Abstract:
A force sensor according to embodiments includes a light-emitting unit, a pair of first light detectors, a reflector, and a first frame. The light-emitting unit emits diffuse light. The first light detectors are arranged in a first direction with the light-emitting unit interposed therebetween. The reflector is arranged to face the light-emitting unit on an optical axis of the light-emitting unit and reflects the diffuse light emitted from the light-emitting unit toward the first light detectors. The first frame is deformed in the first direction so that a reflection range of the diffuse light reflected by the reflector is displaced in the first direction.
Abstract:
A load suspension and weighing system for a removable reservoir unit of a portable dialysis machine includes a centrally located flexure assembly. The flexure assembly includes magnets and a number of flexure rings which allow for movement of the magnets about a fixed circuit board. Sensors in the circuit board sense changes in the magnetic field as the magnets move in relation to the circuit board. The magnetic field changes produce a voltage output which is used by a processor to generate weight calculations. The top of the flexure assembly is attached to the interior of the dialysis machine. The entirety of the reservoir unit is suspended by a first internal frame that is attached to the bottom of the flexure assembly. Having a single flexure assembly positioned above the reservoir unit provides more accurate weight measurements while also preventing damage to the assembly from water spillage.