Abstract:
An excitation signal is produced on a plate of an unknown capacitor and on a plate of a known capacitor. The excitation signal is amplified over time to produce a first output signal, with gain that is proportional to capacitance of the unknown capacitor. The excitation signal is also amplified over time to produce a second output signal, with gain that is proportional to capacitance of the known capacitor. Capacitance of the unknown capacitor is computed using a mathematical function of the first and second output signals and the capacitance of the known capacitor, while being insensitive to amplitude of the excitation signal. Other embodiments are also described and claimed.
Abstract:
The accuracy of reading characteristics or data of pixels or memory cells in a matrix device is increased. An electronic device includes a plurality of drive lines, a sense line intersecting the drive lines, a plurality of element devices provided at intersections thereof, a detecting circuit, a decoder, and a driver. The detecting circuit can detect a first physical quantity of the sense line and transmit a digital signal obtained by digitizing the first physical quantity to the decoder. Each of the element devices can change the first physical quantity of the sense line in accordance with a signal of the corresponding drive line. The driver can transmit coded signals based on a Hadamard matrix to the decoder and the drive lines. The decoder can perform arithmetic processing with use of the coded signals and the digital signal and calculate values based on second physical quantities of the element devices.
Abstract:
The invention is related to a microstructure apparatus for the measurement of biological membranes, comprising a support substrate having an upper side for supporting the membrane, at least one microcavity of the support substrate for receiving an electrolyte, wherein the microcavity is open upward and ends in a microaperture in the upper side of the support substrate, wherein the microaperture has a first characteristic diameter D1 and has at least one electrode, which is at least partially arranged within the microcavity and which has a contact side for contacting an electrolyte, the contact side being arranged adjacent to the inner volume of the microcavity, characterized in that the contact side of the electrode has a characteristic diameter D2, being larger than D1. The invention further relates to a corresponding method for producing the microstructure apparatus.
Abstract:
Methods and systems for monitoring and/or controlling protein separation, purification, extraction, and/or fractionation processes are provided. The impedance of a protein mixture undergoing a protein process is measured and compared to a target reference impedance value or range of reference impedance values. If the measured impedance is not within an acceptable deviation of the target reference impedance value, a parameter of the protein mixture or process is adjusted.
Abstract:
The present disclosure relates to a sheet resistance measuring method, comprising the following steps: connecting at least one to-be-measured thin film having a predetermined shape to two separate electrodes in at least one pair of electrodes; measuring the resistance between the two electrodes in each pair of electrodes; and determining the sheet resistance of the to-be-measured thin film based on the measured resistance and the shape of the corresponding to-be-measured thin film.
Abstract:
A current source circuit flowing an output current to at least one detection element including a first terminal to which a first voltage is supplied and a second terminal being connected to the current source circuit includes a reference resistance, a current mirror circuit including at least one first transistor and at least one second transistor, and a control circuit controlling a voltage of a common wire that is connected to a terminal provided at the first transistor and a terminal provided at the second transistor such that a voltage of a terminal provided at the reference resistance comes to be equal to a reference voltage.
Abstract:
A novel method for real-time small-signal stability analysis for power electronic-based components in a power system. The method may be used to monitor a power system in real-time by perturbing the source side of an electronic-based component of the power system of about 0.5 to 1 percent of a nominal current of the power system at the source side, and perturbing the load side of the power electronic-based component by varying the voltage at the load side using a series voltage injection. Time-domain results of the simultaneous perturbations may be transferred to frequency-domain results and the stability of the power system may be monitored by obtaining a Nyquist contour and employing Generalized Nyquist Criterion or unit circle criterion.
Abstract:
A power supply protection device including a driving circuit, a logic control unit and a protection module is provided. The driving circuit adjusts an external voltage according to a first driving signal and a second driving signal and outputs a driving voltage. The logic control unit generates the first driving signal and the second driving signal according to a protection signal and a pulse signal. The protection module outputs a plurality of test currents orderly to detect a plurality of impedances of the driving circuit before the driving circuit receives the external voltage, generates a plurality of voltage signals according to the impedances and compares the voltage signals with a plurality of reference voltages to generate the protection signal. A power supply protecting method for protecting a driving circuit is also provided.
Abstract:
Systems and methods are provided for remotely identifying and classifying materials based on their respective complex permittivity features. Materials of interest to be identified in later inspections are cataloged according to their respective complex permittivity features by applying electromagnetic fields to them and determining their complex permittivity features. That library of features is used to compare field measurements taken during an inspection to determine the presence of a material of interest and to identify it.
Abstract:
An antenna checking circuit includes an antenna-connection-input terminal, a check-request-input terminal, a check-result-output terminal, a switching element having a control end connected to the check-request-input terminal, an input end connected to the antenna-connection-input terminal, and an output end connected to the check-result-output terminal, and a first resistance connected between the check-request-input terminal and the check-result-output terminal. A DC impedance of an antenna between a power supplying point and a ground point is 0Ω, and when a high-level check-request signal is applied to the check-request-input terminal, in a case where the antenna is connected to an antenna-connection terminal, the switching element turns on, and in a case where the antenna is not connected to the antenna-connection terminal, the switching element turns off. Check-result signals that are output to the check-result-output terminal in these cases are different from each other.