摘要:
A method and device for obtaining a sample with three-dimensional microscopy, in particular a thick biological sample and the fluorescence field emitted by the sample. One embodiment includes obtaining interferometric signals of a specimen, obtaining fluorescence signals emanating from the specimen, recording these signals, and processing these signals so as to reconstruct three-dimensional images of the specimen and of the field of fluorescence emitted by the specimen at a given time. Another embodiment includes a digital holography microscope, a fluorescence excitation source illuminating a specimen, where the microscope and the fluorescence excitation source cooperate to obtain interferometric signals of the specimen and obtain fluorescence signals emanating from the specimen, means for recording the interferometric signals and fluorescence signals, and means for processing the interferometric signals and the fluorescence signals so as to reconstruct three-dimensional images of the specimen and of the field of fluorescence emitted by the specimen at a given time.
摘要:
The present invention is related to a method for performing digital holographic imaging (DHI), said DHI being characterized by the fact that images of a sample are obtained by applying numerical means to reconstruct holograms of the sample. In the method of the invention, the sample is in a medium with controlled properties that influence the behaviour of the sample, and/or that influence the process of hologram formation. The information content of one hologram, or of a plurality of holograms, recorded with the sample in one medium, or in a plurality of medium, is used to reconstruct one image of the sample, or a plurality of images of the sample, that describe quantitatively one property of the sample, or a plurality of properties of the sample. The present invention is also related to an apparatus with which to perform said method.
摘要:
Systems and methods are described for faster processing of multiple spatially-heterodyned direct to digital holograms. A method includes of obtaining multiple spatially-heterodyned holograms, includes: digitally recording a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; digitally recording a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a first angle between a first reference beam and a first, object beam; applying a first digital filter to cut off signals around the first original origin and performing an inverse Fourier transform on the result; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a second angle between a second reference beam and a second object beam; and applying a second digital filter to cut off signals around the second original origin and performing an inverse Fourier transform on the result, wherein digitally recording the first spatially-heterodyned hologram is completed before digitally recording the second spatially-heterodyned hologram and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.
摘要:
Systems and methods are described for content-based fused off-axis illumination direct-to-digital holography. A method includes calculating an illumination angle with respect to an optical axis defined by a focusing lens as a function of data representing a Fourier analyzed spatially heterodyne hologram; recording a content based spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; Fourier analyzing the recorded content based spatially heterodyne hologram including spatially heterodyne fringes by transforming axes of the recorded content based spatially heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined as an angle between the reference beam and the object beam; applying a digital filter to cut off signals around an original origin; and then performing an inverse Fourier transform.
摘要:
Improvements to the acquisition and replay systems for direct-to-digital holography and holovision are described. A method of recording an off-axis hologram includes: splitting a laser beam into an object beam and a reference beam; reflecting the reference beam from a reference beam mirror; reflecting the object beam from an illumination beamsplitter; passing the object beam through an objective lens; reflecting the object beam from an object; focusing the reference beam and the object beam at a focal plane of a digital recorder to form an off-axis hologram; digitally recording the off-axis hologram; and transforming the off-axis hologram in accordance with a Fourier transform to obtain a set of results. A method of writing an off-axis hologram includes: passing a laser beam through a spatial light modulator; and focusing the laser beam at a focal plane of a photorefractive crystal to impose a holographic diffraction grating pattern on the photorefractive crystal. A method of replaying an off-axis hologram includes: illuminating a photorefractive crystal having a holographic diffraction grating with a replay beam.
摘要:
A method for patterning a layer on a substrate can include projecting coherent radiation toward a reflector surface so that the coherent radiation is reflected off the reflector surface to provide a holographic projection of a desired image wherein the reflector surface includes information that corresponds to an inverse of the holographic projection of the desired image. The substrate including the layer can be maintained in the path of the reflected radiation so that the holographic projection is projected onto the layer. Related systems are also discussed.
摘要:
A method for defect inspection of a transparent substrate comprises (a) providing an optical system for performing a diffraction process of object wave passing through a transparent substrate, (b) interfering and wavefront recording for the diffracted object wave and a reference wave to reconstruct the defect complex images (including amplitude and phase) of the transparent substrate, (c) characteristics analyzing, features classifying and sieving for the defect complex images of the transparent substrate, and (d) creating defect complex images database based-on the defect complex images for comparison and detection of the defect complex images of the transparent substrate.
摘要:
The invention relates to a digital holography method for detecting the vibration amplitude of an object (15) having a vibration frequency ω, comprising: generating object illumination waves (Wt) and reference waves (WLO); acquiring interferograms between the reference wave (WLO) and a signal wave (Ws) by means of a bandwidth ω s detector (19), the reference wave comprising two components ELO1, ELO1 of frequencies ω1, ω2 that are respectively staggered in relation to the laser frequency ωL by a quantity δ1=γ1ωs and δ2=qω+γ2ωs, where q is an integer and −0.5≦γ1, γ2≦0.5; and calculating the vibration amplitude of the object from the optical beats spectrum deduced from the complex amplitude of an interferogram.
摘要:
The imaging apparatus includes an optical system dividing light into object and reference beams and causing the object beam and the reference beam to interfere with each other to form interference fringes on an image sensor. A processor performs multiple imaging processes for the interference fringes with different incident angles of the object beam to an object, a first process to acquire a transmitted wavefront for each incident angle and a second process to calculate a three-dimensional refractive index distribution from the transmitted wavefronts. The apparatus includes a modulator changing a phase distribution of light in any one of an optical path from a light source to a dividing element, a reference beam path and an optical path from a combining element to the image sensor and causes the modulator to change the phase distribution in at least one of the multiple imaging processes.
摘要:
The present method includes a data acquisition process and tomographic image generation processes. In the data acquisition process, holograms of an object light and so forth are acquired for each light with a wavelength by changing the wavelengths of the illumination light, off-axis spherical wave reference light, and inline spherical wave reference light. In the tomographic image generation process, a reconstructed light wave of the object light and a reconstructed light wave of the illumination light on a reconstruction surface are generated from these holograms. A reconstruction light wave with adjusted phase is added up for each wavelength to generate a tomographic hologram. From this, an accurate and focused tomographic image without distortion can be generated.