Abstract:
A method for providing public and private mobile communication service in a mobile communication system. The system constructs a mobile communication network including a private base station transceiver subsystem (Base station Transceiver Subsystem) of a private mobile communication network and a plurality of base station transceiver subsystems of a public mobile communication network, which includes mobile switching centers (MSCs), base station controllers (BSCs) connected to said each mobile switching center, and the base station transceiver subsystems connected to said each base station controller. Upon receipt of a service request from a mobile terminal through at least one of the base station transceiver subsystems including the private base station transceiver subsystem, the system determines whether the requested service is a public mobile communication service or a private mobile communication service; and accesses a network corresponding to the determined one of the public and private mobile communication services, and providing a corresponding mobile communication service to the accessed network.
Abstract:
A thermostat control system for monitoring and controlling environmental characteristics of a building includes a base station unit and a remote access unit continuously interfacing through instant wireless private direct connectivity. The system also includes a plurality of sensors that measure the environmental characteristics and provide the thermostat unit with the measurements.
Abstract:
Disclosed herein is a networked media station providing a variety of features including a wireless network interface, a wired network interface, a peripheral interface, and a multimedia interface. The wireless network interface(s) allows the device to communicate to serve as a wireless base station or repeater and/or a bridge between a wireless and a wired network. The peripheral interface allows the device to communicate with a variety of peripherals, and, in conjunction with the network interface(s), allows sharing of a peripheral among multiple networked computers. The multimedia interface allows the device to be used with entertainment devices for streaming of multimedia information from a network connected computer to the entertainment device. Control of various aspects of the device is preferably controlled from a network connected computer.
Abstract:
A mobile station communicates with both a cellular network, by which it is assigned a mobile identification number, and to a cordless cellular base station utilizing the same cellular frequency range and communications protocol. The cordless cellular base station is preferably connected to a public switched telephone network and is assigned a landline number. The cordless cellular base station acts as a conduit between the mobile station and the public switched telephone network. When the mobile station comes within range of a cordless cellular base station, it deregisters automatically from the cellular network and register with the cordless cellular base station. Once the mobile station is communicating with the cordless cellular base station, the cordless cellular base station communicates with the cellular network to instruct the cellular network to route all calls for mobile identification number to the cordless cellular base station's landline number. In addition, all calls placed on the mobile station are sent through the cordless cellular base station to the public switched telephone network. When the mobile station severs contact with the cordless cellular base station, the mobile station registers with the regional cellular base station of the regional cellular network. The cordless cellular base station then sends a network forwarding cancellation message to the cellular network to cancel the forwarding of calls for the mobile station's identification number. Once the mobile station is registered with the regional cell, calls to the mobile stations identification number are directly routed by the cellular network to the mobile station.
Abstract:
A method for providing a neighborhood or local cordless service comprises the steps of receiving subscriber neighborhood zone selection input so that a mobile telephone equipped subscriber may place or receive calls for a fixed rate, for example, per month without having to pay radio frequency air time charges any time they are located within their selected subscribed-to zones. If the subscribed-to zones are adjacent to one another and the mobile subscriber roams from one zone to another, the subscriber may continue their free call uninterrupted and without paying air time charges. However, when the subscriber roams outside their subscribed-to zones they may be switched from the present neighborhood or local cordless services to conventional personal communications services and pay air time charges. However for an active call, no air-time charges are incurred as the user transitions between the cellular/DPCS environment and the neighborhood or local cordless service environment. Associated apparatus comprises an IBS for automatically changing radio frequency channels as the subscriber roams within a subscribed-to neighborhood zone, roams to another subscribed-to zone or roams outside a subscribed-to zone. Subscribers may choose to use their mobile identification number, their current directory telephone number for wired public switched telephone service or obtain a new directory number. Subscribers can actuate their service over-the-air automatically without service personnel assistance from their home neighborhood zone.
Abstract:
A public land mobile network (PLMN)/private wireless network-integrated service network and a system for the service network. The service network according to the present invention can interwork with any PLMN with no dependence on an upper system. In the present invention, there is no need for a public BSC and a separate private BSC. The novel BSC handles both public and private data and voice calls placed from or placed to a mobile station or terminal. The novel BSC enables a wireless phone or terminal to place and receive calls using either the public communications network or the private communications network. Thus, the need for a redundant private BSC is eliminated while providing the diversity of services to mobile stations.
Abstract:
An apparatus, method and system for matching subscriber states in network in which public land mobile network and wired/wireless private network are interworked are disclosed. The system matches subscriber state information of the public network to subscriber state information of the private network by allowing the private network to transmit state information of a mobile station toward the public network, the mobile station being located in a public and private cell area. The method includes the steps of a) allowing the private network to check state of a mobile station located in a public and private cell area and transmit the subscriber state information associated with the mobile station toward the public network; and b) allowing the public network to receive the subscriber state information and update the state of the mobile station in a visitor location register. The step a) is carried out when the state of the mobile station is changed or when an incoming signal from the public network is directed to the mobile station, which is in a local-area call connection state.
Abstract:
A dual-mode telephone with a satellite communication adapter is disclosed. According to one embodiment of the present invention, a cellular-type handportable phone is equipped with a connector for the attachment of accessories. This connector provide a satellite communications adapter accessory access to the handset's signal processing resources which may operate in an alternative mode to process signals received from the satellite and converted by the adapter into a suitable form for processing. The processing translates the satellite signals into voice or data, and vice-versa.
Abstract:
Methods to create a cellular-like communication system, such as a Wireless Private Branch Exchange (WPBX), which includes mobile devices such as standard cordless phones (handsets), particularly, mobile devices utilizing the Bluetooth short-range wireless communication protocol. The methods provide seamless and reliable handoff of sessions between Base Stations while the mobile device is moving between picocells, by implementing a high-level of synchronization between the Base Stations and the Switch. Base Stations of picocells having small coverage areas communicate with the handsets. The communication protocol is divided into a low-level protocol performed by the Base Stations and a high-level protocol performed by the Switch connected to all the Base Stations. The methods support mobile computing or telephony devices and communication protocols, which are not specified to handle handoffs of sessions while moving between Base Stations coverage areas in a data, voice or telephony wireless network.
Abstract:
The invention relates to a registration method used for registering at least one dual mode mobile station (MMS) with an associated private base station (DBS). The private base station is connected to the public telephone network (PSTN, ISDN) and uses, for transmission and reception, frequencies which are close to or identical to those used in a cellular radio system. The dual mode mobile station can operate either in “cordless” mode, used to communicate via said private base station, or in “cellular” mode, used to communicate via base stations (BTS) within the cellular radio system. Registration of the dual mode mobile station with the private base station constitutes a preliminary stage enabling the operation of the dual mode mobile station in “cordless” mode, whereby, following each incoming or outgoing call, a conversation can be established between the dual mode mobile station and other telephone equipment, via the private base station. According to the invention, the registration method consists in interchanging signals in accordance with a preset protocol based on a preset frequency hopping law, determining the frequency over which each signal is to be transmitted, and on a preset uplink start-up frequency, over which the dual mode mobile station transmits the first signal. The frequency hopping law and the uplink start-up frequency being specific to, and known by, the dual mode mobile station and associated private base station.