EXTREME ULTRAVIOLET RADIATION SOURCE
    73.
    发明申请

    公开(公告)号:US20200057181A1

    公开(公告)日:2020-02-20

    申请号:US16538727

    申请日:2019-08-12

    Abstract: An extreme ultra violet (EUV) radiation source apparatus includes a chamber and the chamber encloses an EUV collector mirror. The EUV collector mirror is configured to collect and direct EUV radiation generated in the chamber and at least three exhaust ports are configured to remove debris from the chamber. In some embodiments, the exhaust ports are symmetrically arranged in a plane perpendicular to an optical axis of the collector mirror. In some embodiments, three exhaust ports are disposed such that an angle between any two adjacent ports is 120 degrees. In some embodiments, four exhaust ports are disposed such that an angle between any two adjacent ports is 90 degrees. In some embodiments, the chamber is configured to maintain a pressure in a range from 0.1 mbar to 10 mbar.

    EUV RADIATION SOURCE FOR LITHOGRAPHY EXPOSURE PROCESS

    公开(公告)号:US20200045800A1

    公开(公告)日:2020-02-06

    申请号:US16149643

    申请日:2018-10-02

    Abstract: An extreme ultraviolet (EUV) lithography system is provided. The EUV lithography system includes the above-mentioned extreme ultraviolet (EUV) radiation source. The EUV lithography system further includes a collector configured to collect and reflect the EUV radiation and a mask stage configured to secure an EUV mask. The EUV lithography system also includes a wafer stage configured to secure a semiconductor wafer. In addition, the EUV lithography system includes one or more optical modules configured to direct the EUV radiation from the radiation source to image an integrated circuit (IC) pattern defined on the EUV mask onto the semiconductor wafer.

    REFLECTIVE OPTICAL ELEMENT
    75.
    发明申请

    公开(公告)号:US20200027623A1

    公开(公告)日:2020-01-23

    申请号:US16511166

    申请日:2019-07-15

    Abstract: For a working wavelength in the range from 1 nm to 12 nm, a reflective optical element has, on a substrate, a multilayer system that includes at least two alternating materials having a different real part of the refractive index at the working wavelength. The multilayer system includes a first alternating material from the group formed from thorium, uranium, barium, nitrides thereof, carbides thereof, borides thereof, lanthanum carbide, lanthanum nitride, lanthanum boride, and a second alternating material from the group formed from carbon, boron, boron carbide, or lanthanum as first alternating material and carbon or boron as second alternating material. It has, on the side of the multilayer system remote from the substrate, a protective layer system including a nitride, an oxide and/or a platinum metal.

    GRATING STRUCTURE FOR X-RAY IMAGING
    79.
    发明申请

    公开(公告)号:US20190355488A1

    公开(公告)日:2019-11-21

    申请号:US16469310

    申请日:2017-12-12

    Abstract: The present invention relates to a grating in X-ray imaging. In order to provide a grating with a facilitated stabilization, a grating (10) for X-ray imaging is provided that comprises a grating structure (12) with a first plurality of bar members (14) and a second plurality of gaps (16). A fixation structure (18) is arranged between the bar members to stabilize the grating bar members. The bar members are extending in a length direction (20) and in a height direction (22). The bar members are also spaced from each other by one of the gaps in a direction transverse to the height direction. The gaps are arranged in a gap direction parallel to the length direction. The fixation structure comprises a plurality of bridging web members (24) that are provided between adjacent bar members. Further, the web members are longitudinal web members that are extending in the gap direction and that are provided in an inclined manner in relation to the height direction. The inclination is provided in the gap direction.

    Calibration of a small angle X-ray scatterometry based metrology system

    公开(公告)号:US10481111B2

    公开(公告)日:2019-11-19

    申请号:US15789992

    申请日:2017-10-21

    Abstract: Methods and systems for calibrating the location of x-ray beam incidence onto a specimen in an x-ray scatterometry metrology system are described herein. The precise location of incidence of the illumination beam on the surface of the wafer is determined based on occlusion of the illumination beam by two or more occlusion elements. The center of the illumination beam is determined based on measured values of transmitted flux and a model of the interaction of the beam with each occlusion element. The position of the axis of rotation orienting a wafer over a range of angles of incidence is adjusted to align with the surface of wafer and intersect the illumination beam at the measurement location. A precise offset value between the normal angle of incidence of the illumination beam relative to the wafer surface and the zero angle of incidence as measured by the specimen positioning system is determined.

Patent Agency Ranking