Abstract:
This application relates to a discharge lamp for producing dielectric impediments which has a new electrode configuration with a meandering shape. In this case, either the anode(s) or both the anode(s) and the cathode(s) are of meandering shape.
Abstract:
A charged particle emitting assembly comprises an emitter member (5) for emitting charged particles of one polarity. A tubular shield electrode (6) circumferentially surrounds the emitter member and is held in use at the same polarity as the charged particles. A tubular accelerating electrode (7) is positioned substantially coaxially with the shield electrode (6) and is held in use at the opposite polarity to the shield electrode. The arrangement is such that charged particles from the emitter member (5) initially spread laterally outwardly and then are focused into a beam which passes through the tubular accelerating electrode (7).
Abstract:
Provided is an electron-emitting device with high electron emission efficiency and with stable electron emission characteristics over a long period. The electron-emitting device has a substrate, first and second carbon films laid with a first gap in between on the surface of the substrate, and first and second electrodes electrically connected to the first carbon film and to the second carbon film, respectively. In the electron-emitting device, a narrowest gap portion between the first carbon film and the second carbon film in the first gap is located above a surface of the substrate and the substrate has a depressed portion, at least, in the first gap.
Abstract:
A fluorescent lamp 1 for exterior lighting having a discharge tube 2 of less than or equal to 26 mm outside diameter. Starting from a fluorescent lamp for interior use having a discharge tube 2 of less than or equal to 26 mm, it is possible to achieve optimum operation of the fluorescent lamp 1 in the case of exterior use by applying a thermally conducting material in the form of a coating of foil 15, 16 outside on the discharge tube 2 in the region of one or both electrodes 3, 4.
Abstract:
An electron source comprises a substrate, at least one row-directional wire, at least one column-directional wire intersecting the row-directional wire, at least one insulation layer arranged at the intersection of the row-directional wire and the column-directional wire, and at least one conductive film having an electron-emitting region also arranged at the intersection. The insulation layer is arranged between the row-directional wire and the column-directional wire and the conductive film is connected to both wires.
Abstract:
Metal halide lamp includes an arc tube and a surrounding tubular quartz sleeve between a pair of parallel wire frame members mounted to a glass stem containing current supply leads. The sleeve is provided with two pairs of diametrically opposed apertures, each pair of apertures receiving an elongate wire U-clip which engages a pinched end of the arc tube inside the sleeve and the frame members outside the sleeve. Distal ends of each U-clip are welded to a frame member to fix the position of the arc tube and the sleeve.
Abstract:
The invention provides a nanostructure including an anodized film including nanoholes. The anodized film is formed on a substrate having a surface including at least one material selected from the group consisting of semiconductors, noble metals, Mn, Fe, Co, Ni, Cu and carbon. The nanoholes are cut completely through the anodized film from the surface of the anodized film to the surface of the substrate. The nanoholes have a first diameter at the surface of the anodized film and a second diameter at the surface of the substrate. The nanoholes are characterized in that either a constriction exists at a location between the surface of the anodized film and the surface of the substrate, or the second diameter is greater than the first diameter.
Abstract:
A display apparatus includes a substrate and a plurality of emitters formed on the substrate. The apparatus also includes a dielectric layer formed on the substrate. The dielectric layer includes a plurality of openings each formed about one of the plurality of emitters. The dielectric layer and extraction grid together have a thickness, measured perpendicular to the substrate, similar to a height of the emitters above the substrate. The apparatus also includes an extraction grid formed on the dielectric layer. The extraction grid is formed substantially in a plane of tips of the plurality of emitters and includes openings each formed about and in close proximity to a tip of one of the plurality of emitters. The extraction grid includes germanium so that photons incident on exposed portions of the extraction grid are absorbed and are not transmitted to depletion regions associated with the emitters. This reduces distortion in operation of the display.
Abstract:
A cold cathode element for emitting an electron on application of an electric field. The element includes a diamond carbon film having a half width Hw of a photoelectron spectrum of a C1S electron using an X-ray photoelectron spectroscopy, of 1.72 eV or more. The cold cathode element has the function of sufficiently emitting electrons even by applying a low voltage, and thus the element has high practical utility.
Abstract:
The fabrication of activated carbon based supercapacitors. In particular, a monolithic activated carbon plate or honeycomb electrodes (4, 6 and 8) made by extrusion, molding, or casting is described. The carbon monolithic plates or honeycombs are fabricated from synthetic carbon precursor and active ingredient leading to superior electrical properties.