摘要:
A magnetic material is disclosed including magnetic nanostructures such as nanodots or nanoribbons. The long range magnetic ordering of the material may depend on one or more structural characteristics of the nano structures.
摘要:
A method and system for magnetic recording using self-organized magnetic nanoparticles is disclosed. The method may include depositing surfactant coated nanoparticles on a substrate, wherein the surfactant coated nanoparticles represent first bits of recorded information. The surfactant coating is then removed from selected of the surfactant coated nanoparticles. The selected nanoparticles with their surfactant coating removed may then be designated to represent second bits of recorded information. The surfactant coated nanoparticles have a first saturation magnetic moment and the selected nanoparticles with the surfactant coating removed have a second saturation magnetic moment. Therefore, by selectively removing the surfactant coating from certain nanoparticles, a write operation for recording the first and second bits of information may be performed. A read operation may be carried out by detecting the different magnetic moments of the surfactant coated nanoparticles and the non-surfactant coated nanoparticles.
摘要:
A method and resultant device, in which metal nanoparticles are self-assembled into two-dimensional lattices. A periodic hole pattern (wells) is fabricated on a photoresist substrate, the wells having an aspect ratio of less than 0.37. The nanoparticles are synthesized within inverse micelles of a polymer, preferably a block copolymer, and are self-assembled onto the photoresist nanopatterns. The nanoparticles are selectively positioned in the holes due to the capillary forces related to the pattern geometry, with a controllable number of particles per lattice point.
摘要:
A semiconductor magnetic body comprises a layer (11 15) intended to trap electrons, wherein said layer (11 15) is surrounded on both sides by a magnetic layer (16, 17). This leads to the creation of ferromagnetic character in spatially limited regions of electronic elements such as but not limited to quantum dots, where this creation is achieved using magnetic materials which do not compositionally form part of the region but are rather contained in the zone or zones adjacent to the region.
摘要:
A direct-write method for fabricating magnetic nanostructures, including hard magnetic nanostructures of barium hexaferrite, BaFe, based on nanolithographic printing and a sol-gel process. This method utilizes a conventional atomic force microscope tip, coated with a magnetic material precursor solution, to generate patterns that can be post-treated at elevated temperature to generate magnetic features consisting of barium ferrite in its hexagonal magnetoplumbite (M-type) structure. Features ranging from several hundred nm down to below 100 nm were generated and studied using AFM, magnetic force microscopy, and X-ray photoelectron spectroscopy. The approach offers a new way for patterning functional inorganic magnetic nanostructures with deliberate control over feature size and shape, as well as interfeature distance and location.
摘要:
Nanostructures are provided having electronic properties suitable for artificial ferromagnetism or anti-ferromagnetism in semiconducting arrays. An artificial ferromagnet device comprises an insulator substrate, and a semiconductor material over the insulator substrate. The semiconductor material has a bipartite architecture comprising interconnected, nonmagnetic nanodots organized into a plurality of cells in a trellis structure in which there is one electron per nanodot. Similarly, a nano-logical memory element comprises an insulator substrate, and a semiconductor material over the insulator substrate. The semiconductor material has a bipartite architecture comprising interconnected, nonmagnetic nanodots with a given electron concentration. A method is also provided for insulator-to-metallic transition that allows for signal and power amplification when a semiconductor array is imbedded in MOSFET geometry.
摘要:
The self-assembly of a close-packed, highly-ordered monolayers of molecularly protected nanoparticles on an assembly surface is disclosed. Also disclosed is the transfer of a nanoparticle monolayer from an assembly surface to a transfer surface. The transfer of a monolayer or multilayer structure of nanoparticles from a transfer surface to a substrate by conformal contact of the transfer surface with the substrate is disclosed. Also disclosed is the removal of protective molecules from nanoparticle cores by exposure to an oxidizing atmosphere (optionally in the presence of UV radiation). The exchange of protective molecules in molecularly protected nanoparticles with other molecules is also disclosed.
摘要:
A self-assembled nanobump array structure including a semi-absorbing outer layer provided on at least one nanobump-forming substrate layer, the semi-absorbing outer layer configured to ablate slowly to allow an applied laser energy to be transmitted to the at least one nanobump-forming substrate layer, in which the self-assembled nanobump array structure is formed by an energy and a pressure buildup occurring in the at least one nanobump-forming substrate layer.
摘要:
A self-assembled nanobump array structure including a semi-absorbing outer layer provided on at least one nanobump-forming substrate layer, the semi-absorbing outer layer configured to ablate slowly to allow an applied laser energy to be transmitted to the at least one nanobump-forming substrate layer, in which the self-assembled nanobump array structure is formed by an energy and a pressure buildup occurring in the at least one nanobump-forming substrate layer.
摘要:
A direct-write method for fabricating magnetic nanostructures, including hard magnetic nanostructures of barium hexaferrite, BaFe, based on nanolithographic printing and a sol-gel process. This method utilizes a conventional atomic force microscope tip, coated with a magnetic material precursor solution, to generate patterns that can be post-treated at elevated temperature to generate magnetic features consisting of barium ferrite in its hexagonal magnetoplumbite (M-type) structure. Features ranging from several hundred nm down to below 100 nm were generated and studied using AFM, magnetic force microscopy, and X-ray photoelectron spectroscopy. The approach offers a new way for patterning functional inorganic magnetic nanostructures with deliberate control over feature size and shape, as well as interfeature distance and location.