Process for obtaining a substrate provided with a coating

    公开(公告)号:US10301712B2

    公开(公告)日:2019-05-28

    申请号:US14893421

    申请日:2014-05-21

    摘要: A process for obtaining a substrate provided with a coating, in which the coating includes a pattern with spatial modulation of at least one property of the coating, includes performing a heat treatment, using a laser radiation, of a continuous coating deposited on the substrate. The heat treatment is such that the substrate is irradiated with the laser radiation focused on the coating in the form of at least one laser line, keeping the coating continuous and without melting of the coating, and a relative displacement of the substrate and of the laser line focused on the coating is imposed in a direction transverse to the longitudinal direction of the laser line, while temporally modulating during this relative displacement the power of the laser line as a function of the speed of relative displacement and of the dimensions of the pattern in the direction of relative displacement.

    Process for treating a piece of tantalum or of a tantalum alloy

    公开(公告)号:US10287667B2

    公开(公告)日:2019-05-14

    申请号:US15189778

    申请日:2016-06-22

    摘要: A process for treating a piece of tantalum or of a tantalum alloy, which consists in: placing the piece in a furnace and heating the furnace under vacuum at least at 1 400° C.; forming a carbon multilayer in the peripheral part of the piece, by injecting, in the heated furnace, a gas carbon source at a pressure ≤10 mbar, the multilayer comprising at least one layer C1 of tantalum carbide, which is located at the surface of the piece, and two layers C2 and C3 comprising a carbon content lower than the carbon content of the layer C1; stopping the formation of the multilayer by cooling the piece; placing around the piece a device capable of trapping carbon, oxygen and nitrogen to protect the piece from carbon and oxygen and nitrogen traces present in the furnace; causing the diffusion of carbon present in the layer C1 towards the layers C2 and C3, by heating the furnace under vacuum, the piece being held in the protecting device; and stopping the diffusion of carbon in the piece by cooling the piece under vacuum before the carbon present in the multilayer reaches the center part of the piece. Thus, a piece the surface of which is free from TaC, the center part of which is free from carbon and the part of which located between the surface and the center part comprises tantalum and carbon is obtained.

    Process for design and manufacture of cavitation erosion resistant components

    公开(公告)号:US10281903B2

    公开(公告)日:2019-05-07

    申请号:US14809857

    申请日:2015-07-27

    申请人: Hitachi, Ltd

    摘要: A process for designing and manufacturing a cavitation erosion resistant component. The process includes selecting a base material for use in a cavitation erosion susceptible environment and conducting a uniaxial loading test on a sample of the selected material. Thereafter, atomic force microscopy (AFM) topography on a surface of the tested sample is conducted and used to provide a surface strain analysis. The process also includes crystal plasticity finite element modeling (CPFEM) of uniaxial loading and CPFEM nanoindentation of the selected material over a range of values for at least one microstructure parameter. A subrange of microstructure parameter values that correlate to CPFEM nanoindentation results that provide increased CE resistance is determined. Finally, a component having an average microstructure parameter value that falls within the subrange of microstructure parameter values is manufactured.

    Bone fixation systems, devices, and methods

    公开(公告)号:US10219847B2

    公开(公告)日:2019-03-05

    申请号:US15136812

    申请日:2016-04-22

    摘要: Various systems, devices, and methods for improved bone fixation are disclosed. The system includes a bone plate and a plurality of variable angle screws. The bone plate comprises titanium and the variable angle screws comprise a TiMo alloy treated to have a hardness of at least 35 HRC. A method of manufacturing an implant is also disclosed. The method includes machining the TiMo alloy having a first hardness value and a first % elongation to form an implant; heat treating, quenching, and aging the bone fastener to have a second hardness value that can be greater than the first hardness value and a second % elongation that can be both less than the first % elongation and greater than about 3% elongation.

    Method for Preparing Rods from Titanium-Based Alloys

    公开(公告)号:US20190017159A1

    公开(公告)日:2019-01-17

    申请号:US16065401

    申请日:2015-12-22

    IPC分类号: C22F1/18 B21B3/00 B21C37/04

    摘要: The invention relates to the pressure processing of metals, and specifically to methods for preparing rods and workpieces from titanium alloys, with applications as a structural material in nuclear reactor cores, in the chemical and petrochemical industries, and in medicine. The invention solves the problem of producing rods from high-quality titanium alloys while simultaneously ensuring the high efficiency of the process. A method for preparing rods or workpieces from titanium alloys includes the hot forging of an initial workpiece and subsequent hot deformation, the hot forging of an ingot is carried out following heating, with shear deformations primarily in the longitudinal direction and a reduction ratio of k=(1.2−2.5), and then performing hot rolling forging, without cooling, changing the direction of shear deformations to being primarily transverse and with a reduction ratio of up to 7.0, and conducting subsequent hot deformation by heating deformed workpieces.