Abstract:
An electrochemical device (such as a battery) includes at least one electrode having a fluid surface and one or more sensors configured to detect an operating condition of the device. Fluid-directing structures may modulate flow or retain fluid in response to the sensors. An electrolyte within the device may also include an ion-transport fluid, for example infiltrated into a porous solid support.
Abstract:
Techniques for sensory enhancement and augmentation are described. Some embodiments provide an audible assistance facilitator system (“AAFS”) configured to provide audible assistance to a user via a hearing device. In one embodiment, the AAFS receives data that represents an utterance of a speaker received by a hearing device of the user, such as a hearing aid, smart phone, media device, or the like. The AAFS identifies the speaker based on the received data, such as by performing speaker recognition. The AAFS determines speaker-related information associated with the identified speaker, such as by determining an identifier (e.g., name or title) of the speaker, by locating an information item (e.g., an email message, document) associated with the speaker, or the like. The AAFS then informs the user of the speaker-related information, such as by causing an audio representation of the speaker-related information to be output via the hearing device.
Abstract:
Systems and methods are described for implementing or deploying medical or veterinary utility modules comprising a first module operable in a digestive or respiratory tract to engage a second module, optionally by a magnetic field. Alternatively or additionally, systems may be operable to remain in situ and also operable to permit a therapeutic material dispensation. In some contexts, for example, systems or methods may dispense a therapeutic material via a subject's throat or elsewhere in the digestive or respiratory tract.
Abstract:
A device, a system, or a method is described for treating a disease or a condition of one or more joints of articulating bone in a mammalian subject. The device provides one or more medicaments to one or more joints of the mammalian subject. A device is described that includes one or more sheaths configured to contact one or more body contours in proximity to one or more joints of articulating bone of a mammalian subject; one or more sensors configured to detect one or more physiological conditions of the one or more joints; and one or more applicators supported by the one or more sheaths and configured to respond to the one or more sensors by injecting one or more medicaments to the one or more joint tissues of the mammalian subject.
Abstract:
Described embodiments include a computer-implemented method, device, and computer program product. A computer-implemented method includes electronically receiving a request for information indicative of future fees and costs to be incurred by a particular patient presently undergoing a diagnosis, treatment, or prevention of a particular disease, illness, injury, or other physical or mental impairment (hereafter “healthcare service”). The computer-implemented method includes electronically receiving data at least partially indicative of the healthcare service provided to the patient as of receipt of the request for information. The computer-implemented method includes forecasting probable fees and costs to complete delivery of the healthcare service to the patient. The forecasting is responsive to the received data and on a characteristic of the healthcare service. The computer-implemented method includes outputting in substantially real time information indicative of the probable future fees and costs to complete delivery of the healthcare service to the patient.
Abstract:
An improved heat engine is disclosed. The heat engine comprises at least one heat pipe containing a working fluid flowing in a thermal cycle between vapor phase at an evaporator end and liquid phase at a condenser end. Heat pipe configurations for high-efficiency/high-performance heat engines are disclosed. The heat pipe may have an improved capillary structure configuration with characteristic pore sizes between 1μ and 1 nm (e.g. formed through nano- or micro-fabrication techniques) and a continuous or stepwise gradient in pore size along the capillary flow direction. The heat engine may have an improved generator assembly configuration that comprises an expander (e.g. rotary/turbine or reciprocating piston machine) and generator along with magnetic bearings, magnetic couplings and/or magnetic gearing. The expander-generator may be wholly or partially sealed within the heat pipe. A heat engine system (e.g. individual heat engine or array of heat engines in series and/or in parallel) for conversion of thermal energy to useful work (including heat engines operating from a common heat source) is also disclosed. The system can be installed in a vehicle or facility to generate electricity.
Abstract:
Devices, methods, and systems are described for administration to at least one biological tissue of at least one device including at least one altered microorganism. In an embodiment, the altered microorganism includes at least one nucleic acid construct encoding at least one therapeutic agent.
Abstract:
A method is generally described which includes operating an electrical energy storage device or an electrochemical energy generation device includes providing at least one thermal control structure formed of a high thermal conductive material. The high thermal conductive material having a high k-value, the high k-value being greater than approximately 410 W/(m*K). The thermal control structures are disposed adjacent at least a portion of the electrical energy storage device or the electrochemical energy generation device. The thermal control structures are configured to provide heat transfer away from the portion of the electrical energy storage device or the electrochemical energy generation device. The method also includes configuring a controller with a control algorithm to control the actions of a controllable fluid flow device as a function of a mobile device states. The mobile device using electricity from the electrical energy storage device or the electrochemical energy generation device. The electrical energy storage device or the electrochemical energy generation device is configured to provide electrical current and the controllable fluid flow device providing a fluid to the at least one thermal control structure. The method also includes accessing a processor of a mobile device. The processor is configured to determine at least one mobile device state. Further, the method includes providing an electrical characteristic sensor coupled to the power source and is configured to sense at least one electrical characteristic of the power source and to provide a signal representative of the at least one characteristic to the controller.
Abstract:
Systems, devices, methods, and compositions are described for providing an actively-controllable disinfecting implantable device configured to, for example, treat or prevent an infection in a biological subject.
Abstract:
A field emission device is configured as a heat engine. Different embodiments of the heat engine may have different configurations that may include a cathode, gate, suppressor, and anode arranged in different ways according to a particular embodiment. Different embodiments of the heat engine may also incorporate different materials in and/or proximate to the cathode, gate, suppressor, and anode.