Abstract:
The power supply device comprises a supply transistor commanded by a command signal and providing electric power to a lighting module, and a driving means configured to selectively generate, depending on an instruction signal representative of the structure of said at least one lighting module, a first command signal able to command the supply transistor into an ohmic regime, a second command signal able to command the supply transistor into a pulse width modulation regime involving an alternation of ohmic regimes and blocked regimes, and a third command signal able to command the supply transistor into a saturated regime.
Abstract:
The present disclosure is directed to a microfluidic die that includes a plurality of heaters above a substrate, a plurality of chambers and nozzles above the heaters, a plurality of first contacts coupled to the heaters, and a plurality of second contacts coupled to the heaters. The plurality of second contacts are coupled to each other and coupled to ground. The die includes a plurality of contact pads, a first signal line coupled to the plurality of second contacts and to a first one of the plurality of contact pads, and a plurality of second signal lines, each second signal line being coupled to one of the plurality of first contacts, groups of the second signal lines being coupled together to drive a group of the plurality of heaters with a single signal, each group of the second signal lines being coupled to a remaining one of the plurality of contact pads.
Abstract:
The present disclosure is directed to a microfluidic die that includes a plurality of heaters above a substrate, a plurality of chambers and nozzles above the heaters, a plurality of first contacts coupled to the heaters, and a plurality of second contacts coupled to the heaters. The plurality of second contacts are coupled to each other and coupled to ground. The die includes a plurality of contact pads, a first signal line coupled to the plurality of second contacts and to a first one of the plurality of contact pads, and a plurality of second signal lines, each second signal line being coupled to one of the plurality of first contacts, groups of the second signal lines being coupled together to drive a group of the plurality of heaters with a single signal, each group of the second signal lines being coupled to a remaining one of the plurality of contact pads.
Abstract:
An electronic device includes an integrated circuit chip mounted to a heat slug. The heat slug has a peripheral region having first thickness along a first direction, the peripheral region surrounding a recess region (having a second, smaller, thickness along the first direction) that defines a chip mounting surface along a second direction perpendicular to the first direction. The recess region defines side borders and a nook extends into the heat slug along the side borders. An insulating body embeds the integrated circuit one chip and heat slug. Material of the insulating body fills the nook.
Abstract:
Ambient light is detected by a photodiode circuit by measuring the time taken for a digital output of the photodiode circuit to change state in response to exposure of a photodiode of the photodiode circuit to that ambient light. A nominal time for state change is calculated based on photodiode circuit characteristics. Furthermore, an effective time for the photodiode circuit digital output to change state is determined in a calibration mode where the photodiode has been disconnected and a reference current is applied to the circuit. An illumination value of the detected ambient light is then calculated as a function of: the measured time, the effective time and the nominal time.
Abstract:
A circuit includes a first n-bit communications block and a second m-bit communications block. A controller is configured to control mode of operation for the first and second communications blocks. In a first mode, the first and second communications blocks function as a single communications block for n+m bit communications. In a second mode, the first and second communications blocks operate as substantially independent communications block for n bit communications and m bit communications.
Abstract:
A synchronization system includes a memory and a control circuit. The control circuit includes a write interface for writing data in said memory with a first clock signal, wherein the write interface is configured for operating with a write pointer in response to a write command, a read interface for reading data from said memory with a second clock signal, wherein the read interface is configured for operating with a read pointer in response to a read command, a synchronization circuit for synchronizing said write pointer and said read pointer with a synchronization latency, and an elaboration circuit for elaborating data in memory with an elaboration latency, wherein the elaboration latency is smaller than the synchronization latency.
Abstract:
An image sensor has a per-column ADC arrangement including first and second capacitors allowing a comparator circuit to perform correlated double sampling. The capacitors are continuously connected to, respectively, the analog pixel signal and a ramp signal without use of a hold operation. The comparator circuit comprises a differential input being connected to the junction of the two capacitors and being biased by a reference signal. The reference signal is preferably sampled and held from a reference voltage. The use of a differential input as first stage of the comparator addresses problems arising from ground voltage bounce when a large pixel array images a scene with low contrast. Connectivity of the differential input stage allows the ramp signal to see a constant capacitive load thus reduce image artifacts referred to as smear.
Abstract:
A synchronization system includes a memory and a control circuit. The control circuit includes a write interface for writing data in said memory with a first clock signal, wherein the write interface is configured for operating with a write pointer in response to a write command, a read interface for reading data from said memory with a second clock signal, wherein the read interface is configured for operating with a read pointer in response to a read command, a synchronization circuit for synchronizing said write pointer and said read pointer with a synchronization latency, and an elaboration circuit for elaborating data in memory with an elaboration latency, wherein the elaboration latency is smaller than the synchronization latency.
Abstract:
A camera module lens cap is provided to protect a camera module in a mobile device where the camera module is exposed. The camera module lens cap includes an optically transparent member for positioning adjacent a camera lens, and a housing for carrying the optically transparent member. The housing includes an overhanging lip for engaging a base of the camera module.