Abstract:
Methods and systems for obtaining an ocular aberration measurement of an eye of a patient are provided. Exemplary techniques involve obtaining a first induced metric for the eye that corresponds to a first accommodation state of the eye, obtaining a second induced metric for the eye that corresponds to a second accommodation state of the eye, and determining a natural metric of the eye based on the first and second induced metrics. An induced metric may include a pupil size or a spherical aberration. Techniques can also include determining a target metric for the eye base on the natural metric, determining whether an actual metric of the eye meets the target metric, obtaining an ocular aberration measurement of the eye if the actual metric meets the target metric, and determining a treatment for the eye based on the ocular aberration measurement.
Abstract:
Deconvolution systems and methods based on cornea smoothing can be used to obtain an ablation target or treatment shape that does not induce significant high order aberrations such as spherical aberration. Exemplary ablation targets or treatment shapes can provide a post-operative spherical aberration that is equal to or below a naturally occurring amount of spherical aberration.
Abstract:
Some embodiments disclosed here provide for a method fragmenting a cataractous lens of a patient's eye using an ultra-short pulsed laser. The method can include determining, within a lens of a patient's eye, a high NA zone where a cone angle of a laser beam with a high numerical aperture is not shadowed by the iris, and a low NA zone radially closer to the iris where the cone angle of the laser beam with a low numerical aperture is not shadowed by the iris. Laser lens fragmentation is accomplished by delivering the laser beam with the high numerical aperture to the high NA zone, and the laser beam with the low numerical aperture to the low NA zone. This can result in a more effective fragmentation of a nucleus of the lens without exposing the retina to radiation above safety standards.
Abstract:
Embodiments of this invention are directed to a laser system configured to deliver a pulsed laser beam to a patient's eye. The system includes a laser engine comprising an optically-pumped laser oscillator configured with an extracavity waveplate, and an optional intracavity waveplate, that can be tilted and rotated to provide a limited range of wavelengths for laser mode excitation and to maintain stable mode-locked laser operation. In an embodiment, the present design includes an oscillator and a photosensor, such as a fast photodetector or an autocorrelator, positioned to receive a beam of laser light associated with the oscillator or laser engine, and a controller configured to receive readings from the photosensor and alter the laser gain provided within the oscillator to a level outside the bistable performance zone avoiding mode and gain competitions.
Abstract:
Embodiments of the present invention relate to systems and methods for removing the fixation light reflection from an ophthalmic image. In one embodiment, an ophthalmic laser treatment system, having a digital imaging system for capturing images of a patient's eye and a visual fixation light source configured to produce a fixation light upon which the patient's eye can be focused, further includes a filter configured to remove from the image any light reflection caused by the visual fixation light source.
Abstract:
Apparatus and methods are provided for interfacing a surgical laser with an eye using a patient interface device that minimizes aberrations through a combination of a contact lens surface positioning and a liquid medium between an anterior surface of the eye and the contact lens surface. Further, support rings, ocular stability devices, and methods for interfacing an eye during laser surgery are provided. In an embodiment, by way of example only, a support ring includes a first end surface, a second end surface opposite the first end surface, and an outer surface extending between the first end surface and the second end surface. The second end surface has a width that is greater than a width of the first end surface and extends toward a central opening in the support ring to define a concave curvature configured to substantially match a curvature of a patient's eye. The outer surface includes an annular groove formed adjacent the first end surface and a plurality of exterior vacuum channels spaced around the annular groove and extends axially from the annular groove to the second end surface.
Abstract:
A sensor for measuring ultraviolet radiation and mount for retaining the sensor includes a converter plate having a perimeter and an edge about the perimeter, a retainer comprising a conical mirror and a frame having a UV blocker, and a fluorescent radiation detector coupled to the frame. The converter plate fluoresces in response to UV radiation incident on the converter plate. The conical mirror couples with the converter plate and directs a portion of the fluorescent radiation emitted from the edge of the plate to the detector coupled to the frame. The detector detects the fluorescent radiation from the converter plate and produces an electrical signal proportional to the magnitude of fluorescent radiation.
Abstract:
An apparatus to treat a patient comprises a laser beam, a measurement module, a scanner and a curved patient interface lens. The curved patient interface is measured with a pattern so as to determine a plurality of distances of the curved surface at a plurality of measurement locations. The measurement pattern may comprise the plurality of measurement locations distributed about a central measurement axis corresponding to the laser treatment axis. The plurality of measurement locations of the curved surface may correspond to a portion of a planned treatment profile, such that the measured distances correspond to alignment of the planned treatment. The plurality of distances can be used to determine an apex of the curved surface of the patient interface and to align the laser treatment axis with the apex of the curved surface.
Abstract:
An ophthalmic patient interface system includes an interface device and an ocular device. The interface device includes a frame having a first end and a second end, a lens disposed at the first end, and a skirt affixed to the first end. The second end is adapted to couple with a surgical laser system, and the skirt is adapted to seal against an anterior surface of an eye. The ocular device includes magnifying optics and is adapted to be removably seated within the second end. The magnifying optics image a region on a corneal side of the lens when the ocular device is seated within the second end.
Abstract:
Wavefront measurements of eyes are typically taken when the pupil is in a first configuration in an evaluation context. The results can be represented by a set of basis function coefficients. Prescriptive treatments are often applied in a treatment context, which is different from the evaluation context. Hence, the patient pupil can be in a different, second configuration, during treatment. Systems and methods are provided for determining a transformed set of basis function coefficients, based on a difference between the first and second configurations, which can be used to establish the vision treatment.