Abstract:
Some aspects provide determination of a function to rectify functional differences between netlist G1 and netlist G2 having inputs V. The determination may include determination of a signal s of netlist G1 that can be re-synthesized so as to correct the functional differences between netlist G1 and netlist G2, assignment of respective static values to a first plurality of inputs V, assignment of respective initial values to a second plurality of inputs V, determination of a first function based on the assigned static values, the assigned initial values, a first error function reflecting the difference between outputs of netlist G1 and netlist G2 for each vector of inputs V in a case that s equals 0, and a second error function reflecting the difference between the outputs of netlist G1 and netlist G2 for each vector of inputs V in a case that s equals 1. Also included may be determination of whether the first function rectifies the functional differences between netlist G1 and netlist G2, assignment, if it is determined that the first function does not rectify the functional differences, of respective next values to the second plurality of inputs, and determination of a second function based on the first function, the assigned static values, the assigned next values, the first error function, and the second error function.
Abstract:
Some embodiments relate to a method and apparatus for performing logic equivalence checking (EC) of circuits using adaptive learning based on a persistent cache containing information on sub-problems solved from previous equivalency checking runs. These sub-problems can include basic EC tasks such as logic cone comparison and/or state element mapping.
Abstract:
A ceramic transformer level driving circuit mainly aims to transform a low voltage signal to another low voltage signal through an amplified signal to drive a medium voltage system. It includes a control unit to generate a resonant frequency and output phase signal waveforms, a waveform transformation unit to provide phase signals and perform waveform phase transformation for the phase signal waveforms, and a medium voltage driving circuit which includes a floating level unit and a driving unit which receives a medium voltage electric input. The driving unit actuates opening and closing at different time to enable the floating level unit to output a voltage floating level thereby to drive a ceramic transformer to control the medium voltage system through a low voltage level.
Abstract:
An equivalence checking method provides first and second logic functions. Don't care gates are inserted for don't care conditions in the first and second logic functions. The insertion of the don't care gates creates a first intermediate circuit and a second intermediate circuit. All 3DC gates of the first intermediate circuit are propagated and merged into a single 3DC gate when 3DC gates and SDC gates coexist in either of the first and second intermediate circuits. All 3DC gates of the second intermediate circuit are propagated and merged into a single 3DC gate when 3DC gates and SDC gates coexist in either of the first and second intermediate circuits. First and second circuit are produced in response to propagating and merging the 3DC gates. A combinational equivalence check is then performed of the first circuit to the second circuit under different equivalence relations.
Abstract:
A method for modeling a circuit design includes synthesizing the circuit design to create a first gate-level representation of the circuit design. The method also includes analyzing a second gate-level representation of the circuit design to learn architecture information, and resynthesizing the first gate-level representation of the circuit design to incorporate the learned architecture information from the second gate-level representation of the circuit design. A computer-readable storage medium has stored thereon computer instructions that, when executed by a computer, cause the computer to synthesize a circuit design to create a first gate-level representation of the circuit design. The computer instructions also cause the computer to analyze a second gate-level representation of the circuit design to learn architecture information, and resynthesize the first gate-level representation of the circuit design to incorporate the learned architecture information from the second gate-level representation of the circuit design.
Abstract:
A circuit has a first circuit module including a first resistor and first and second transistors coupled in parallel with the first resistor. The first resistor and the first and second transistors are coupled together at a first node. An equivalent resistance across the first circuit module increases as a voltage of the first node is increased from a first voltage to a second voltage, and the equivalent resistance across the first circuit module decreases as the voltage of the first node is increased from the second voltage to a third voltage.
Abstract:
A driver includes a first driver stage having at least one input node and at least one first output node. The first driver stage includes a T-coil structure that is disposed adjacent to the at least one first output node. The T-coil structure includes a first set of inductors each being operable to provide a first inductance. A second set of inductors are electrically coupled with the first set of inductors in a parallel fashion. The second set of inductors each are operable to provide a second inductance. A second driver stage is electrically coupled with the first driver stage.
Abstract:
A circuit includes a capacitive-load voltage controlled oscillator having an input configured to receive a first input signal and an output configured to output an oscillating output signal. A calibration circuit is coupled to the voltage controlled oscillator and is configured to output one or more control signals to the capacitive-load voltage controlled oscillator for adjusting a frequency of the oscillating output signal. The calibration circuit is configured to output the one or more control signals in response to a comparison of an input voltage to at least one reference voltage.
Abstract:
Some aspects of the present disclosure provide for a method of automatically balancing mask misalignment for multiple patterning layers to minimize the consequences of mask misalignment. In some embodiments, the method defines a routing grid for one or more double patterning layers within an IC layout. The routing grid has a plurality of vertical grid lines extending along a first direction and a plurality of horizontal grid lines extending along a second, orthogonal direction. Alternating lines of the routing grid in a given direction (e.g., the horizontal and vertical direction) are assigned different colors. Shapes on the double patterning layers are then routed along the routing grid in a manner that alternates between different colored grid lines. By routing in such a manner, variations in capacitive coupling caused by mask misalignment are reduced.
Abstract:
The present disclosure relates to a resonant clock system having a driver component, a clock load capacitor, and a reconfigurable inductor array. The driver component generates a driven input signal. The clock load capacitor is configured to receive the driven input signal. The inductor array is configured to have an effective inductance according to a selected frequency. The inductor array also generates a resonant signal at the selected frequency using the effective inductance.