Abstract:
Described is a switched capacitor circuit for performing an analog circuit function. Unlike conventional switched capacitor circuits employing operational amplifiers, the switched capacitor circuit uses a comparator and does not require direct feedback between the input and output of the comparator. The switched capacitor circuit includes a first and a second switched capacitance network, a comparator and a current source. The first switched capacitance network has an input terminal to receive a circuit input voltage during a first phase. The comparator has an input terminal in communication with the first switched capacitance network and an output terminal in communication with the second switched capacitance network through a switched terminal. The current source communicates with the switched capacitance networks and supplies a current to charge the networks during a second phase. The circuit can be used, for example, to provide high gain amplification in integrated circuits.
Abstract:
A method for determining a pixel output value of an imager; the imager having a plurality of pixels, a reset switch associated with each pixel and a select switch associated with each pixel; due to incident illumination upon a pixel of the imager after a reset period. The method captures a first pixel output value when the reset switch is OFF during a reset period and the select switch is ON during a reset period and captures a second pixel output value when the select switch is ON near an end of an integration period. If the second pixel output value is captured when the select switch is ON near an end of a first integration period, the first pixel output value may be captured when the reset switch is OFF during a reset period preceding the first integration period and the select switch is ON during a reset period preceding the first integration period. Moreover, if the second pixel output value is captured when the select switch is ON near an end of a first integration period, the first pixel output value may be captured when the reset switch is OFF during a reset period immediately following the first integration period and the select switch is ON during a reset period immediately following the first integration period.
Abstract:
A sampled-data analog circuit includes a level-crossing detector. The level-crossing detector controls sampling switches to provide a precise sample of the output voltage when the level-crossing detector senses the predetermined level crossing of the input signal. The level-crossing detection may be a zero-crossing detection. An optional common-mode feedback circuit can keep the output common-mode voltage substantially constant.
Abstract:
A filter layer for a display and a method of preparing the filter layer, and a display including the filter layer, are provided. The filter layer for a display includes oxide particles and nano-sized metal particulates adhered to the surface of the oxide particles. A surface plasma resonance (SPR) phenomenon is triggered at the interface of the oxide/metal to selectively absorb light of at least one predetermined wavelength.
Abstract:
There is provided an imaging system including a MOS pixel array having a number, r, of rows of pixels. Each pixel of the array includes a light detecting element, a reset node connected to the light detecting element for controlling dissipation of photogenerated charge produced by the light detecting element, and a sense node connected to the light detecting element for measuring photogenerated charge produced by the light detecting element. A charge control voltage generation circuit is provided, having a topology for producing a plurality of charge control voltages selected to control dissipation of photogenerated charge produced by the light detecting element, in accordance with a corresponding pixel transfer function. A switch circuit is connected to the voltage generation circuit and to the pixel array to apply voltages produced by the charge control voltage generation circuit to reset nodes of pixels. The application by the switch circuit of each of the charge control voltages to a row of pixel reset nodes is characterized by a voltage application settling time, tS, that is less than about 1/Nrf, where N is an integer and f is imager frame rate. This provides the ability to implement a desired transfer function, to expand imager dynamic range, in a manner that is immune to capacitances of the imager, by causing the voltage spikes, or glitches, associated with imager row capacitance, to decay substantially completely during the time over which an imager pixel row is accessed to apply a control voltage.
Abstract:
A CRT has an improved contrast with a provision of a filter layer where nano-sized metal particles are dispersed in a dielectric matrix to selectively absorb light in predetermined wavelengths, specifically wavelengths between peak wavelengths of primary colors emitted by phosphors coated on the inner surface of the face plate. The improved contrast is a result of the metal particles in a dielectric matrix resonating with particular wavelengths and thus absorbing them.
Abstract:
A simple transistor circuit which acts as a linear resistor for small applied voltages, but becomes extremely resistive for large applied voltages is disclosed. Two-dimensional resistive grids comprising these resistive fuses can be employed to smooth and segment discretized images in machine vision. Existing and previously proposed VLSI implementations of resistive fuses have required at least thirty-three transistors. The resistive fuse circuit of the present invention uses only four transistors in its simplest embodiment, thus making it possible to design much denser vision arrays.
Abstract:
The present invention comprises a circuit for measuring the capacitive differences of small capacitors. The circuit comprises a reference capacitor and a sensor capacitor. Connected to one of the plates of each capacitor is a switch which connects the capacitors to one of two reference voltages. The other plate of the capacitors are connected to an input terminal of a voltage comparator. The comparator compares the input voltage with a third reference voltage. Differences in voltages detected by the comparator are applied to a feedback loop for generating an offset voltage at the input terminal. The offset voltage applied at the input terminal is proportional to the capacitive difference between the reference capacitor and the sensor capacitor. The feedback loop comprises a successive approximation register for digitizing the offset voltages and a digital to analog converter for converting the digitized voltages into analog voltages which are applied at the input terminal. Digitized offset voltages can be measured at the output of the successive approximation register.
Abstract:
Amplifier circuits implemented with a buffer amplifier with a voltage gain substantially equal to one. In one example, a continuous-time amplifier is implemented by applying the input source across the input and the output terminals of the buffer amplifier. In another example, a discrete-time amplifier is implemented. During the sampling phase at least one input voltage is sampled, and during the transfer phase at least one capacitor is coupled across the input and the output terminals of a buffer amplifier to effectuate an amplification.
Abstract:
A comparator based circuit with effective offset cancellation includes first and second amplifiers and an offset capacitor operatively connected to the first and second amplifiers. An offset voltage source generates an offset voltage. A first switch connects the offset voltage source to ground during a first time period. The first amplifier generates an output voltage in response to the first switch connecting the offset voltage source to ground during the first time period. A second switch connects the offset capacitor to ground during a second time period. The first switch disconnects the offset voltage source from ground during a third time period, and the second switch disconnects the offset capacitor from ground during the third time period.