Abstract:
A device and method for amplifying signals is provided. The device can have an input to receive an input signal having a first desired signal on a first carrier, a second desired signal on a second carrier, and one or more interfering signals. The device can have a first carrier aggregation (CA) chain for use with the first desired signal and a second CA chain for use with the second desired signal. The first and second CA chains can be coupled to the input. The first and second CA chains can have a plurality of transconductance stages. Each of the transconductance stages can be configured as a high impedance stage or a low impedance stage. The transconductance stages can be selectively activated to incrementally adjust the transconductance, and therefore the input impedance, of each of the CA chains.
Abstract:
Aspects of a method and system for transmitter linearization are provided. A signal may be amplified via one or more circuits comprising a first transistor having a first bias voltage applied to its gate via a resistor, and a second transistor having its source coupled to a first terminal of the resistor, its drain coupled to a second terminal of the resistor, and its gate coupled to a second bias voltage. The signal may be AC-coupled, via one or more capacitors, for example, to the gate of the first transistor. The first bias voltage and the second bias voltage may be such that the first transistor operates in the active region the second transistor operates in the subthreshold region. The effective channel width of the second transistor may be configurable during operation of the one or more circuits.
Abstract:
A differential low noise amplifier (LNA) is operable in a selectable one of two modes. The LNA includes a first transistor, a second transistor, a third transistor and a fourth transistor. In the first mode (PDC mode), the four transistors are configured to operate as a post-distortion cancellation (PDC) LNA. The third and fourth transistors operate as cancel transistors that improve linearity, but reduce LNA gain somewhat. In the second mode (high gain mode), the third and fourth transistors are configured so that amplified versions of the LNA input signal that they output are added to amplified versions of the LNA input signal that are output by the first and second main transistors, resulting in increased gain. Multiplexing circuits are provided within the LNA so that the LNA is configurable into a selectable one of the two modes by controlling a digital mode control signal supplied to the LNA.
Abstract:
Provided is a frequency converter using an amplification circuit that is improved with linearity by coupling a main transistor and an auxiliary transistor in parallel. An amplification circuit that is improved with linearity comprises an input block amplifying an input signal, an induction block inducing a current proportionate to an output signal of the input block and an amplification block comprising. The amplification block comprises a main transistor amplifying the output signal of the induction block, wherein the main transistor is biased to operate at a saturation region and an auxiliary transistor amplifying the output signal of the induction block, wherein the auxiliary transistor is biased to operate at a subthreshold region and coupled to the main transistor in parallel.
Abstract:
A current to voltage amplifier in accordance with the present invention includes a current to voltage amplifier for receiving a sensor input to thereby output an amplified voltage corresponding to the sensor input including a bias current provider for providing a bias current, an input block for flowing a sensor current based on the sensor input, a first diode-connected MOS transistor for receiving the bias current from the bias current provider and providing the sensor current to the input block, and a first MOS transistor for flowing a remnant current subtracting the sensor current from the bias current, wherein the amplified voltage is corresponded to the current.
Abstract:
Amplifier circuits implemented with a buffer amplifier with a voltage gain substantially equal to one. In one example, a continuous-time amplifier is implemented by applying the input source across the input and the output terminals of the buffer amplifier. In another example, a discrete-time amplifier is implemented. During the sampling phase at least one input voltage is sampled, and during the transfer phase at least one capacitor is coupled across the input and the output terminals of a buffer amplifier to effectuate an amplification.
Abstract:
An apparatus and method for the cancellation of third order derivative distortion for ultra low power (ULP) applications are disclosed involving a first amplifier connected in parallel with a second amplifier for amplifying a received signal. The first amplifier includes at least one transistor operating in the sub-threshold region such that the first amplifier possesses a positive third derivative of a transfer function of the first amplifier, which generates a first amplified signal having in phase third order distortions. The second amplifier includes at least one differential pair of transistors operating in the sub-threshold region such that the second amplifier possesses a negative third derivative of a transfer function of the second amplifier, which generates a second amplified signal having in opposite phase third order distortions. The first and second amplified output signals are combined resulting in cancellation of third order distortions in the combined amplified signal.
Abstract:
Methods and devices for leakage current reduction are described. A regulator transistor is connected to a switch to bias the transistor with a first voltage during an ON state and a second voltage during the OFF state of the transistor. The switchable bias allows leakage current decrease and “on” resistance increase of the transistor.
Abstract:
Techniques for adaptively generating bias current for a switched-capacitor circuit are described. The switched-capacitor circuit charges and discharges at least one switching capacitor at a sampling rate and may be a ΣΔ ADC that digitizes an analog signal at the sampling rate and provides digital samples. The switched-capacitor circuit may support multiple modes associated with different sampling rates. A bias circuit generates a bias current for the switched-capacitor circuit to be proportional to the sampling rate for a selected mode, to provide a bandwidth proportional to the sampling rate for an operational transconductance amplifier (OTA) within the switched-capacitor circuit, and to track changes in the switching capacitor(s) due to variations in integrated circuit (IC) process and temperature. The settling time of the switched-capacitor circuit may track with the multiple modes and across IC process and temperature variations.
Abstract:
A differential low noise amplifier (LNA) is operable in a selectable one of two modes. The LNA includes a first transistor, a second transistor, a third transistor and a fourth transistor. In the first mode (PDC mode), the four transistors are configured to operate as a post-distortion cancellation (PDC) LNA. The third and fourth transistors operate as cancel transistors that improve linearity, but reduce LNA gain somewhat. In the second mode (high gain mode), the third and fourth transistors are configured so that amplified versions of the LNA input signal that they output are added to amplified versions of the LNA input signal that are output by the first and second main transistors, resulting in increased gain. Multiplexing circuits are provided within the LNA so that the LNA is configurable into a selectable one of the two modes by controlling a digital mode control signal supplied to the LNA.