Abstract:
A method for forming high voltage devices is provided. A P-type semiconductor substrate is provided. An oxide layer is formed on the P-type semiconductor substrate. A first P-well and a second P-well are formed in the P-type semiconductor substrate. A first N-well is formed in the second p-well and a second N-well is formed in the first P-well. A field oxide layer on the second N-well and a gate oxide layer are formed on the P-type substrate. A polysilicon layer is formed and defined as a gate on the gate oxide layer across a portion of the field oxide layer and aportion of the first N-well. A source region is formed in the first N-well and a drain region is formed in the second N-well. A P.sup.+ -type doped region is formed between the substrate and the source region across a part of the first N-well within the second P-well.
Abstract:
A protection circuit using point discharge suitable for use in an integrated circuit, protects circuit from damage by electrostatic discharge. The integrated circuit at least comprises an input/output port, a high voltage line, and a low voltage line. The protection circuit has point discharge structures at two ends of the input/output ports, respectively corresponding to the point discharge structures of the high and low voltage lines, and is suitable for use in all semiconductor fabricating processes.
Abstract:
A method of fabricating a MOSFET device with a multiple T-shaped gate has the following steps. A substrate with an active region and a non-active region is provided, wherein the active region has a plurality of trenches, and the non-active region has a plurality shallow trench isolation structures. A thin insulating layer and a conducting layer are formed in the trenches. The conducting layer is defined to form a gate. The device is implanted with first ions. Then, the device is further implanted with second ions by using a mask, wherein the mask expose the trenches of the active region, and the opening of the mask is wider than the trench. The MOSFET device has at least the following structures. There is a substrate with an active region and a non-active region, wherein the active region has a plurality of trenches and the non-active region has a plurality of shallow trench isolation structures. There is a multiple T-shaped gate with a first part and a second part, wherein the first part is formed between two trenches on the substrate and the second part is formed in the trenches of the active region. There is a source/drain region with a shallow doped region and a deep doped region. The multiple T-shaped gate increases the channel width of the MOSFET device and decreases the short channel effect of the high integrity ICs.
Abstract:
A structure of a conductive line. The structure of a conductive line comprises a substrate with two conductive lines formed thereon. These two conductive lines are isolated by the formation of a dielectric layer. The conductive lines are electrically connected by a contact/via array. The contact/via array further comprises contact/via columns and contact/via rows made up of contacts/vias. Each contact/via column and contact/via row are added with a load resistor, so that the equivalent resistance of each contact/via is identical.
Abstract:
An improved grip structure for a pneumatic tool, in which the grip is furnished with a valve seat mounted with a control valve; the central part of the valve seat has an intake passage, of which the outer end is connected with an intake connector, the valve seat and a ring-shaped groove of the bearing-block hole in the dynamic housing are connected and communicated each other by means of an intake passage. Two symmetrical exhaust passages are furnished on both sides of the valve seat, and extended from the outer end of the grip to the ring-shaped groove of the bearing-block hole in the dynamic housing; a pressure air can enter a central intake passage, flowing through the control valve and a side intake passage, and finally flowing into the ring-shaped groove in the dynamic housing so as to drive blades and a rotor to turn; then, the pressure air will be exhausted through the ring-shaped groove of the cylinder sleeve and the two exhaust passages so as to provide a better intake and exhaust passages for the pneumatic tool.
Abstract:
The invention provides an MEMS device. The MEMS device includes: a substrate, a proof mass, a spring, a spring anchor, a first electrode anchor, and a second electrode anchor, a first fixed electrode and a second fixed electrode. The proof mass is connected to the substrate through the spring and the spring anchor. The proof mass includes a hollow structure inside, and the spring anchor, the first electrode anchor, and the second electrode anchor are located in the hollow structure. The proof mass and the first fixed electrode form a first capacitor, and the proof mass and the second fixed electrode form a second capacitor. There is neither any portion of the proof mass nor any portion of any fixing electrode located between the first electrode anchor, second electrode anchor, and the spring anchor.
Abstract:
The invention provides an MEMS device. The MEMS device includes: a substrate, a proof mass, a spring, a spring anchor, a first electrode anchor, and a second electrode anchor, a first fixed electrode and a second fixed electrode. The proof mass is connected to the substrate through the spring and the spring anchor. The proof mass includes a hollow structure inside, and the spring anchor, the first electrode anchor, and the second electrode anchor are located in the hollow structure. The proof mass and the first fixed electrode form a first capacitor, and the proof mass and the second fixed electrode form a second capacitor. There is neither any portion of the proof mass nor any portion of any fixing electrode located between the first electrode anchor, second electrode anchor, and the spring anchor.
Abstract:
The invention provides a micro-electro-mechanical system (MEMS) module, which includes a MEMS die stacked on an electronic circuit die. The electronic circuit die includes a substrate, the substrate including at least one through-silicon via (TSV) penetrating through the substrate; and at least one electronic circuit. The electronic circuit includes a circuit region, and a signal transmission layer directly connecting the TSV. At least one wire is connected between a middle part of the MEMS die and the TSV. There is no signal communication at the interfacing location where the MEMS die is stacked on and bonded with the electronic circuit die.
Abstract:
The invention provides Stat3 and Tyk2 targets that have importance for diagnosis of neurodegenerative diseases such as Alzheimer's disease. Stat3 and Tyk2 are also important as targets for drug development for neurodegenerative diseases.
Abstract:
A method for manufacturing an antenna structure is disclosed. Employing steps of mixing with a catalyst and embedding a metal insert can simplify steps for manufacturing the antenna structure. Further, a non-conductive frame produced by the process disclosed herein can exhibit waterproof effect. The catalyst mentioned above is mixed with a plastic and then injected into a mold to form the non-conductive frame. The metal insert mentioned above is disposed in the mold before the step of injecting the plastic. Alternatively, the metal insert is embedded in the non-conductive frame after the step of injecting the plastic.